ANSWERS TO EVEN HW PROBLEM CHAPTER 16

Section 16.1.
16. corresponds to Graph I, since the horizontal vector components remain constant, but the vectors above the xy-plane point generally upward, while the vectors below the xy-plane point generally downward.
18. corresponds to Graph II; each vector $\mathbf{F}(x, y, z)$ has the same length and direction as the position vector at the point (x, y, z), and therefore the vectors all point directly away from the origin.

Section 16.2
18. Vectors starting on C_1 point in roughly the same direction as C_1, so the line integral is positive. On the other hand, no vectors starting on C_2 point in the same direction as C_2, while some vectors point in roughly the opposite direction, so we would expect the line integral to be negative.

38. The parabola can be parametrized by $\mathbf{r}(t) = \langle t, t^2 \rangle$ with $-1 \leq t \leq 2$. We have:
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_{-1}^{2} \langle t \sin(t^2), t^2, -1 \rangle \cdot \langle 1, 2t, 0 \rangle \, dt = \int_{-1}^{2} t \sin(t^2) + 2t^3 \, dt = \frac{1}{2} \cos(1) + 15 - \cos(4)$$

Section 16.3:
2. $\int_C \nabla \cdot d\mathbf{r} = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = f(2, 2) - f(1, 0) = 9 - 3 = 6$

Section 16.4:
4. 0 12. 0 14. -16 18. 12π

Section 16.5:
10. (a) divergence is positive (b) curl is the zero vector.
12. (a) meaningless because f is a scalar (b) vector field (c) scalar field (d) vector field (e) meaningless because \mathbf{F} is not a scalar field (f) vector field (g) scalar field (h) meaningless because f is a scalar field (i) vector field (j) meaningless because $\div \mathbf{F}$ is a scalar field (k) meaningless because div \mathbf{F} is a scalar field (l) scalar field.

Section 16.6
12. We have: $x^2 + y^2 = u^2 \cos^2 v + u^2 \sin^2 v = u^2 = z^2$, which represents the equation of a cone with axis the x-axis, graph V.
14. We have $y^2 + z^2 = u^2$ so, if u is held constant, each grid curve is a circle of radius u in the plane $x = u^3$. The graph then must be graph III.
16. These equations correspond to graph VI: when $u = 0$, then $x = 3 + \cos v$, $y = 0$, and $z = \sin v$, which are equations of a circle with radius 1 in the xz-plane centered at $(3,0,0)$. When $u = \frac{1}{2}$, then $x = \frac{3}{2} + \frac{1}{2} \cos v$, $y = 0$ and $z = \frac{3}{2} + \frac{1}{2} \sin v$, which are equations of a circle with radius $\frac{1}{2}$ in the xz-plane centered at $\left(\frac{3}{2}, 0, \frac{3}{2}\right)$. This suggests that the grid curves with u constant are the vertically oriented circles visible on the surface. The spiraling grid curves correspond to keeping v constant.
20. $x = 4 - y^2 - 2z^2, y = y, z = z$ where $y^2 + 2z^2 \leq 4$ since $x \geq 0$. Then the associated vector equation is $\mathbf{r}(y, z) = \langle 4 - y^2 - 2z^2 \rangle \mathbf{i} + y \mathbf{j} + z \mathbf{k}$.
22. In spherical coordinates, parametric equations are $x = 4 \sin \phi \cos \theta$, $y = 4 \sin \phi \sin \theta$, $z = 4 \cos \phi$.

The intersection of the sphere with the plane $z = 2$ corresponds to $z = 4 \cos \phi = 2 \Rightarrow \cos \phi = \frac{1}{2} \Rightarrow \phi = \frac{\pi}{3}$. By symmetry, the intersection of the sphere with the plane $z = -2$ corresponds to $\phi = \pi - \frac{\pi}{3} - \frac{2\pi}{3}$. Thus the surface is described by $0 \leq \theta \leq 2\pi, \frac{\pi}{3} \leq \phi \leq \frac{2\pi}{3}$.
Section 16.7:

10. Using the "natural" parametrization: \(x = y + 2z^2, \ y = y, \ z = z \), with domain \(D : 0 \leq y \leq 1, \ 0 \leq z \leq 1 \).

 We have \(|\vec{r}_y \times \vec{r}_z| = \sqrt{2 + 16z^2} \) and \(\iint_S z^2 \sqrt{2 + 16z^2} dydz = \frac{13}{12}\sqrt{2} \).

12. The surface is made up of three parts: \(S_1 \), the lateral surface of the cylinder, \(S_2 \) the front of the cylinder (\(S_2 \) is the ellipse cut out from the plane \(x + y = 2 \) by the cylinder) and \(S_3 \), the back of the cylinder in the plane \(y = 0 \).

 \(S_1 \) can be parametrized by \(x = \cos(\theta), \ y = y, \ z = \sin(\theta) \) with domain \(D: 0 \leq y \leq 2 - \cos(\theta), \ 0 \leq \theta \leq 2\pi \).

 We have \(|\vec{r}_\theta \times \vec{r}_y| = 1 \) so that \(\iint_{S_1} xy dS = \int_0^{2\pi} \int_0^{2 - \cos(\theta)} \cos(\theta) y dy d\theta = -2\pi \).

 \(S_2 \) can be parametrized by \(x = x, \ y = 2 - x, \ z = z \) with domain \(D: x^2 + z^2 \leq 1 \).

 We have \(|\vec{r}_x \times \vec{r}_z| = \sqrt{2} \) so that
 \[
 \iint_{S_2} xy dS = \iiint_D x(2 - x)\sqrt{2} dA = \sqrt{2} \int_0^{2\pi} \int_0^1 (2r\cos(\theta) - r^2\cos^2(\theta)) r dr d\theta = -\frac{\sqrt{2}}{4} \pi.
 \]

 On \(S_3 \) we have \(y = 0 \), thus \(\iint_{S_3} xy dS = \iint_{S_3} 0 dS = 0 \).

 Adding up the three integrals we have that the integral over \(S \) is given by \(-2\pi - \frac{\sqrt{2}}{4} \pi = -\frac{1}{4}(8 + \sqrt{2})\pi \).

28. We have \(\vec{r}_u \times \vec{r}_v = (\sin v, -\cos v, u) \) and \(\vec{F} \cdot (\vec{r}(u, v)) = (u \sin v, u \cos v, v^2) \) so that
 \[
 \iint_S \vec{F} \cdot d\vec{S} = \int_0^1 \int_0^\pi (u \sin v, u \cos v, v^2) \cdot (\sin v, -\cos v, u) dv du = \int_0^1 \int_0^\pi u \sin^2 v - u \cos^2 v + uv^2 dv du = \frac{\pi^3}{6}.
 \]