So
\[a \int_0^t y(s) \, ds = ab \int_0^t e^{a(t-s)} x(s) \, ds + y(0) e^{at} - y(0) \]

Plugging this back into (1) we get
\[y(t) = y(0) + ab \int_0^t e^{a(t-s)} x(s) \, ds + y(0) e^{at} - y(0) + b X(t) \]

So
\[y(t) = y(0) e^{at} + ab \int_0^t e^{a(t-s)} x(s) \, ds + b X(t) \]

Consider
\[E y(t) = E y(0) e^{at} + ab \int_0^t e^{a(t-s)} E x(s) \, ds + b E X(t) \]
\[= E y(0) e^{at} + ab \int_0^t e^{a(t-s)} E x(s) \, ds \]
\[= e^{at} E y(0) \]

w.l.o.g. Suppose \(E y(0) = 0 \) \(\Rightarrow E y(t) = 0 \)

\[E y(t) y(0) = E y(0)^2 e^{a(t+0)} + y(0) e^{at} ab \int_0^t e^{a(s-t)} x(s) \, ds + y(0) e^{a\frac{t}{2}} \int_0^t e^{a(t-s)} x(s) \, ds \]
\[+ y(0) e^{at} b X(t) + y(0) e^{a\frac{t}{2}} b X(t) + \]
\[+ a^2 b^2 \int_0^t e^{a(t-s)} x(s) \, ds \int_0^t e^{a(s-t)} x(s) \, ds \]
\[+ a b^2 \int_0^t e^{a(t-s)} x(s) \, ds \int_0^t e^{a(s-t)} X(s) \, ds \]
\[+ b^2 X(t) X(t) \]

Assume \(y(0) \) independent of \(X(t) \) \&
\[= e^{a(t+0)} E y(0)^2 + a^2 b^2 \int_0^t \int_0^{a(t-s)} e^{a(s-2)} x(s) \, ds \, dx(s) \]
\[+ a b^2 \int_0^t e^{a(t-s)} E x(s) X(s) \, ds + a b^2 \int_0^t e^{a(s-2)} E x(s) X(s) \, ds \]
\[+ b^2 E X(t) X(t) \]
\[= E y(0)^2 + a b^2 \int_0^t E x(s) X(s) \, ds + a b^2 \int_0^t e^{a(s-2)} E x(s) X(s) \, ds \]
\[+ b^2 E X(t) X(t) \]