Autonomous Differential Equations
Population Dynamics
Common Types: ① Uninhibited ② Inhibited ③ Logistic

Uninhibited case: population can grow “forever.”

The rate of change of a population is directly proportional to the population.
Suppose the initial population is 250, find $P(t)$, the population at time t (years).

\[
\frac{dP}{dt} = kP \Rightarrow \frac{dP}{P} = k \, dt \Rightarrow \int \frac{dP}{P} = \int k \, dt = \ln P = (kt + c)
\]

\[
\Rightarrow P = Ce^{kt}
\]

To find C, use the point $P(0)=250 \Rightarrow 250 = Ce^{k(0)} \Rightarrow C=250
\]

\[
\Rightarrow P = 250e^{kt}
\]

Suppose the population is 500 after 3 yrs. (Now we can find k).

\[
500 = 250e^{k(3)}
\]

\[
\Rightarrow 2 = e^{3k}
\]

\[
\Rightarrow \ln 2 = 3k \Rightarrow k = \frac{\ln 2}{3} \approx 0.231
\]

\[
P(t) = 250e^{0.231t}
\]

Uninhibited growth (nothing to stop it).
Inhibited growth model.
Assume that \(L \) is the limiting population. In this case, the rate of change of the population is directly proportional to the available "room for growth."

\[
\frac{dp}{dt} = k(L-p) \quad (L \text{ is a constant})
\]

\[
\frac{dp}{L-p} = k \, dt \Rightarrow \int \frac{dp}{L-p} = \int k \, dt
\]

\[
-\ln(L-p) = kt + C
\]

\[
\ln(L-p) = (C - kt) \quad (C \text{ absorbs the negative, } k \text{ does not})
\]

\[
L-p = Ce^{-kt}
\]

\[
-p = Ce^{-kt} - L
\]

\[
p(t) = L + Ce^{-kt}
\]

Suppose at time \(t=0 \), the population was 1000, and the limiting population is 10,000. After 3 yrs, the population was 2500.

\[
L = 10,000:
\]

\[p(0) = 1000 \]

\[
1000 = 10,000 + Ce^{-k(0)} \Rightarrow C = -9000
\]

\[
p(t) = 10000 - 9000e^{-kt}
\]

\[
2500 = 10,000 - 9000e^{-k(3)}
\]

\[
k = \frac{\ln\left(\frac{7500}{7000}\right)}{-3} \approx 0.0608
\]

\[
p(t) = 10,000 - 9000e^{-0.0608t}
\]
Logistics Growth Model

The rate of change of a population is directly proportional to both the population and the available room for growth. Assume \(L \) = limiting population.

\[
\frac{dP}{dt} = KP(L-P) \Rightarrow \frac{dP}{P(L-P)} = k \, dt
\]

\[
\int \frac{dP}{P(L-P)} = \int k \, dt
\]

PARTIAL FRACTIONS!

\[
\frac{1}{P(L-P)} = \frac{a}{P} + \frac{b}{L-P}
\]

\[
\Rightarrow \frac{1}{P(L-P)} = \frac{a(L-P) + bP}{P(L-P)} = \frac{aL-aP+bP}{P(L-P)}
\]

\[
\Rightarrow \frac{1}{L} = a + \frac{b}{L}
\]

\[
p(L) + aL = \frac{1}{L}
\]

\[
a = \frac{1}{L}
\]

So therefore,

\[
\int \frac{dP}{P(L-P)} = \int \left(\frac{1}{L} \right) \frac{dP}{P} + \int \frac{1}{L-P} \, dp
\]

\[
= \frac{1}{L} \left(\ln P - \ln (L-P) \right) = \frac{1}{L} \ln \left(\frac{P}{L-P} \right)
\]

Remember, we had

\[
\int \frac{dP}{P(L-P)} = \int k \, dt
\]

\[
\Rightarrow \frac{1}{L} \ln \left(\frac{P}{L-P} \right) = kt + C
\]

\[
\Rightarrow \ln \left(\frac{P}{L-P} \right) = (Lkkt + C)
\]

\[
\Rightarrow \frac{P}{L-P} = Ce^{Lkkt}
\]

\[
\Rightarrow P = CE^{Lkkt}(L-P)
\]

\[
\Rightarrow P = LCe^{Lkkt} - PCe^{Lkkt}
\]

\[
\Rightarrow P + PCe^{Lkkt} = LCe^{Lkkt}
\]

\[
P(1 + Ce^{Lkkt}) = LCe^{Lkkt}
\]

\[
P(t) = \frac{LCe^{Lkkt}}{1 + Ce^{Lkkt}}
\]

\[
\Rightarrow \frac{LP(t)}{L} = Ce^{-Lkkt}
\]

\[
\text{Logistics Function}
\]

\[
\Rightarrow \text{Logistic Growth}
\]
Logistics Model: \(P(t) = \frac{L}{1 + Ce^{-kt}} \)

Suppose a cruise ship holds 5000 people. At time \(t=0 \), 10 people get sick. 48 hrs later, 200 people are sick.

So \(L = 5000 \)...

Initial population is \(P(0) = 10 \)

\[
10 = \frac{5000}{1 + Ce^{-2k(0)}} \Rightarrow 10 = \frac{5000}{1 + C} \Rightarrow C = 499
\]

\[
\therefore P(t) = \frac{5000}{1 + 499e^{-5000kt}}.
\]

Now find \(k \):

\[
200 = \frac{5000}{1 + 499e^{-5000k(48)}} \Rightarrow \frac{499e^{-240000k}}{499} = 2.4 \Rightarrow e^{-240000k} = \frac{24}{499} \Rightarrow -240000k = \ln\left(\frac{24}{499}\right) \Rightarrow k = \frac{\ln\left(\frac{24}{499}\right)}{-240000} \approx 0.00001264...
\]

So \(P(t) = \frac{5000}{1 + 499e^{-5000\left(0.00001264\right)t}} \)

\[
(P(t) = \frac{5000}{1 + 499e^{-0.0632t}})
\]