Line Integral Practice

Scalar Form. The general form is \(\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t))|r'(t)| \, dt \), where the surface \(S \) is given as \(z = f(x, y) \), and the path \(C \) over which the integral is evaluated is defined by the vector-valued function \(r(t) = (x(t), y(t)) \).

The usual method of solving a scalar line integral is to (1) parameterize the path in terms of variable \(t \). This gives you your \(x \) and \(y \) as functions of \(t \). Be sure to note the bounds of \(t \), which gives you the bounds of integration; (2) Find \(|r'(t)| \); (3) Replace \(x \) and \(y \) in the integrand with their equivalents in terms of \(t \), and replace \(ds \) with \(|r'(t)| \, dt \); (4) Simplify and evaluate. Use a calculator if necessary.

Set up and solve:

1. Evaluate \(\int_C f(x, y) \, ds \), where \(z = x^2 + 3y \) over the path \(C \) which is the straight line from (1,2) to (3,1).
2. Evaluate \(\int_C f(x, y) \, ds \), where \(z = xy^2 \) over the path \(C \) which is the portion of the cubic \(y = x^3 \) from (0,0) to (2,8).
3. Evaluate \(\int_C f(x, y) \, ds \), where \(z = 2x + y^2 \) over the path \(C \) which is the portion of a circle of radius 1, centered at the origin, starting at (1,0) and ending at (0,1).

Answers: 1. \(\frac{53}{6} \); 2. 308.969 (used a calculator); 3. \(2 + \frac{\pi}{4} \).

Vector (Circulation) Form. The general form is \(\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b P(x, y)dx + Q(x, y)dy \). You’ll be given a vector field \(\mathbf{F}(x, y) = \langle P(x, y), Q(x, y) \rangle \) and a path \(C = r(t) = \langle x(t), y(t) \rangle \).

To solve, you parameterize the path in terms of \(t \), which gives you the functions \(x(t) \) and \(y(t) \). Replace the \(x \) and \(y \) in the functions \(P \) and \(Q \) with the new versions in terms of \(t \). Then simplify and evaluate. All line integrals are in terms of \(t \). Note that the three vector line integral forms shown above all mean the same thing. Get used to seeing these and be able to recognize it as a vector line integral when you see it.

Set up and solve:

4. Evaluate \(\int_C \mathbf{F} \cdot \mathbf{T} \, ds \) where \(\mathbf{F}(x, y) = \langle x^2, x + y \rangle \) and \(C \) is the straight line from (4,0) to (2,2).
5. Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(\mathbf{F}(x, y) = \langle 3x - 2y, y^2 \rangle \) and \(C \) is the portion of a parabola \(y = x^2 \) from (1,1) to (3,9).
6. Evaluate \(\int_a^b P(x, y)dx + Q(x, y)dy \) where \(\mathbf{F}(x, y) = \langle x^2, 1 - y \rangle \) and \(C \) is a circle of radius 2 centered at the origin starting from (2,0) and traveling counterclockwise to (-2,0).

Answers: 4. \(-\frac{32}{2} \); 5. \(\frac{712}{3} \); 6. \(\frac{16}{3} \).

Report any errors to surgent@asu.edu.