Fourier Expansion in Orthogonal Polynomials of Several Variables

Yuan Xu
Department of Mathematics
University of Oregon
Eugene, OR 97403-1222

We discuss results on Cesàro summability of the Fourier orthogonal expansion on the sphere S^{d-1}, on the unit ball B^d and on the standard simplex T^d. The measures or weight functions are the classical type: $\prod_{i=1}^d |x_i|^{2\kappa_i} \, d\omega$ on S^{d-1}, $\prod_{i=1}^d |x_i|^{2\kappa_i}(1 - |x|^2)^{\mu-1/2}$ on B^d and $\prod_{i=1}^d x_i^{\kappa_i-1/2}(1 - x_1 - \cdots - x_d)^{\mu-1/2}$ on T^d, where $\kappa_i \geq 0$ and $\mu \geq 0$. The main result gives the necessary and sufficient conditions for the convergence (critical index). Here is a sample of the result:

Theorem 1 The Cesàro (C, δ) means of the Fourier orthogonal expansion with respect to the measure $\prod_{i=1}^d |x_i|^{2\kappa_i} \, d\omega$ ($\kappa_i \geq 0$) converges uniformly on S^{d-1} if and only if

$$\delta > \frac{d - 2}{2} + \sum_{i=1}^d \kappa_i - \min_{1 \leq i \leq d} \kappa_i.$$

Moreover, the convergence holds pointwise on $S^{d-1} \setminus \{x \in S^{d-1} : x_i = 0, \text{ some } i\}$, if $\delta > (d - 2)/2$.

Part of this work is joint with Zhongkai Li.