Tridiagonal pairs

Paul Terwilliger
Mathematics Department,
University of Wisconsin,
480 Lincoln Drive,
Madison, WI 53706
Email:terwilli@math.wisc.edu

ABSTRACT

We consider the following situation in linear algebra. Let \mathcal{F} denote a field, and let V denote a vector space over \mathcal{F} with finite positive dimension. We consider a pair of linear transformations $A : V \to V$ and $A^* : V \to V$ satisfying the following four conditions.

1. A and A^* are both diagonalizable on V.

2. There exists an ordering V_0, V_1, \ldots, V_d of the eigenspaces of A such that

 $$A^* V_i \subseteq V_{i-1} + V_i + V_{i+1} \quad (0 \leq i \leq d),$$

 where $V_{-1} = 0, V_{d+1} = 0$.

3. There exists an ordering $V_0^*, V_1^*, \ldots, V_\delta^*$ of the eigenspaces of A^* such that

 $$A V_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \quad (0 \leq i \leq \delta),$$

 where $V_{-1}^* = 0, V_{\delta+1}^* = 0$.

4. There is no subspace W of V such that both $A W \subseteq W, A^* W \subseteq W$, other than $W = 0$ and $W = V$.

We call such a pair a Tridiagonal pair, or TD pair, for short. We wish to classify all TD pairs. We are motivated by the following connection to orthogonal polynomials. By a Leonard pair, we mean a TD pair for which the eigenspaces V_i and V_i^* all have dimension 1. In [1], we showed there exists a 1–1 correspondence between the Leonard pairs and the finite length polynomial sequences of the Askey-Scheme. The most general polynomials of this sort are the q-Racah polynomials.

Concerning arbitrary TD pairs, we have the following results. Referring to the above TD pair, we show $d = \delta$. We show that for $0 \leq i \leq d$, the eigenspaces V_i and V_i^* have the same dimension. Denoting this common dimension by ρ_i, we show the sequence $\rho_0, \rho_1, \ldots, \rho_d$ is
symmetric and unimodal, i.e. \(\rho_{i-1} \leq \rho_i \) for \(1 \leq i \leq d/2 \) and \(\rho_i = \rho_{d-i} \) for \(0 \leq i \leq d \). We show that there exists a sequence of scalars \(\beta, \gamma, \gamma^*, \varrho, \varrho^* \) taken from \(\mathcal{F} \) such that both

\[
0 = [A, A^2 A^* - \beta A A^* A + A^* A^2 - \gamma (A A^* + A^* A) - \varrho A^*],
\]

\[
0 = [A^*, A^{*2} A - \beta A^* A A^* + A A^{*2} - \gamma^* (A^* A + A A^*) - \varrho^* A],
\]

where \([r, s] = rs - sr\). The sequence is unique if \(d \geq 3 \). Let \(\theta_i \) (resp. \(\theta_i^* \)) denote the eigenvalue of \(A \) (resp. \(A^* \)) associated with \(V_i \) (resp. \(V_i^* \)), for \(0 \leq i \leq d \). We show the expressions

\[
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \quad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}
\]

both equal \(\beta + 1 \), for \(2 \leq i \leq d - 1 \). We hope these results will ultimately lead to a complete classification of the TD pairs.

References

[1] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear algebra and its applications, submitted