Progress in approximation theory.
An international perspective. Proceedings of the International Conference on Approximation Theory held at the University of South Florida, Tampa, Florida, March 19--22, 1990. Edited by A. A. Gonchar and E. B. Saff. Springer Series in Computational Mathematics, 19.
Springer-Verlag, New York, 1992. xviii+451 pp. $79.00. ISBN 0-387-97901-8

Contents: N. M. Atakishiyev [N. M. Atakishiev] and S. K. Suslov, Difference hypergeometric functions (1--35); M. E. H. Ismail, R. Perline and J. Wimp, Pade approximants for some $q$-hypergeometric functions (37--50); S. C. Milne, Summation theorems for basic hypergeometric series of Schur function argument (51--77); P. Nevai, Orthogonal polynomials, recurrences, Jacobi matrices, and measures (79--104); A. L. Levin and E. B. Saff, Szego type asymptotics for minimal Blaschke products (105--126); A. I. Aptekarev and H. Stahl [Herbert Stahl], Asymptotics of Hermite-Pade polynomials (127--167); A. A. Gonchar, E. A. Rakhmanov and S. P. Suetin, On the rate of convergence of Pade approximants of orthogonal expansions (169--190); D. S. Lubinsky, Spurious poles in diagonal rational approximation (191--213); C. A. Micchelli, Expansions for integrals relative to invariant measures determined by contractive affine maps (215--239); S. Demko, Approximation of measures by fractal generation techniques (241--260); R. A. DeVore, P. Petrushev and X. M. Yu [Xiang Ming Yu], Nonlinear wavelet approximation in the space $C({R}\sp d)$ (261--283); A. A. Borichev, Completeness of systems of translates and uniqueness theorems for asymptotically holomorphic functions (285--293); N. U. Arakelyan, Approximation by entire functions and analytic continuation (295--313); N. K. Nikolskii and V. I. Vasyunin, Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. II (315--331); V. I. Kolyada, On the differential properties of the rearrangements of functions (333--352); K. I. Oskolkov, A class of I. M. Vinogradov's series and its applications in harmonic analysis (353--402); T. S. Norfolk, A. Ruttan and R. S. Varga, A lower bound for the de Bruijn-Newman constant $\Lambda$. II (403--418); P. Borwein and E. B. Saff, On the denseness of weighted incomplete approximations (419--429); M. von Golitschek, G. G. Lorentz and Y. Makovoz, Asymptotics of weighted polynomials (431--451).

\{The papers are being reviewed individually.\}