97k:33001
Special functions, $q$-series and related topics.
Proceedings of The Fields Institute Workshop held at the University of Toronto, Toronto, ON, June 12--23, 1995. Edited by Mourad E. H. Ismail, David R. Masson and Mizan Rahman. Fields Institute Communications, 14.
American Mathematical Society, Providence, RI, 1997. x+277 pp. $82.00. ISBN 0-8218-0524-X

Contents: Krishnaswami Alladi, Refinements of Rogers-Ramanujan type identities (1--35); Bruce C. Berndt, Heng Huat Chan and Liang-Cheng Zhang, Ramanujan's class invariants with applications to the values of $q$-continued fractions and theta functions (37--53); George Gasper, Elementary derivations of summation and transformation formulas for $q$-series (55--70); R. Wm. Gosper, Jr., $\int\sp {m/6}\sb {n/4}\ln\Gamma(z)dz$ (71--76); F. Alberto Grunbaum and Luc Haine, On a $q$-analogue of Gauss equation and some $q$-Riccati equations (77--81); Robert A. Gustafson and Christian Krattenthaler, Determinant evaluations and $U(n)$ extensions of Heine's $\sb 2\phi\sb 1$-transformations (83--89); Mourad E. H. Ismail, David R. Masson and Sergei K. Suslov, Some generating functions for $q$-polynomials (91--108); Erik Koelink [H. Tjerk Koelink], Addition formulas for $q$-special functions (109--129); Tom H. Koornwinder, Special functions and $q$-commuting variables (131--166); Masatoshi Noumi, Mathijs S. Dijkhuizen and Tetsuya Sugitani, Multivariable Askey-Wilson polynomials and quantum complex Grassmannians (167--177); Peter Paule and Axel Riese, A Mathematica $q$-analogue of Zeilberger's algorithm based on an algebraically motivated approach to $q$-hypergeometric telescoping (179--210); Walter Van Assche, Orthogonal polynomials in the complex plane and on the real line (211--245); Yuan Xu [Yuan Xu 1], On orthogonal polynomials in several variables (247--270).

\{The papers are being reviewed individually.\}