Nadezhda Bazunova, Institute of Pure mathematics, Estonia
e-mail: nadegda@ut.ee

Algebra of differential forms with exterior differential $d^3=0$ in dimentian one
 

Abstract

My talk is based on the paper, whith appear in Turkish Jourmal of Physics. In this work, we construct the algebra of differential forms with the cube of exterior differential equal to zero on one-dimensional space. We prove this algebra is q-differential algebra, where q is a cubic root of unity. Since the square of differential is not equal to zero, the algebra of differential forms is generated not only by the first order differential but also second order differential. We study the bimodule generated by this second order differential, and show its structure is similar to the structure of bimodule generated by the first order
differential in the case of the anyonic line.