Problem 5.2 The beam has a built-in support and is loaded by a 2-kN force and a 6 kN-m couple.

(a) Draw the free-body diagram of the beam.
(b) Determine the reactions at the supports.

Solution:

(a)

(b) \[\sum F_x = 0: \quad A_x = 0 \]

\[\sum F_y = 0: \quad A_y - 2 \text{kN} = 0 \]

\[\sum M_A = 0: \quad M_A - (2)(2 \text{kN}) + 6 \text{kN-m} = 0 \]

\[M_A = -2 \text{kNm} \]

\[A_y = 0 \]

\[A_y = 2 \text{kN} \]
Problem 5.140 Determine the reactions at A and B.

Solution: From the free body diagram at the right, the equations of equilibrium are

\[\sum F_x = 400 \cos(30^\circ) + A_x = 0. \]

\[\sum F_y = A_y + B_y - 400 \sin(30^\circ) = 0. \]

and \[\sum M_A = (0.5B_y - (0.22)(400) \cos 30^\circ) = 0. \]

Solving these three equations in the three unknowns, we get

\[A_x = -346.4 \text{ N}, \]

\[A_y = 47.6 \text{ N}, \]

and \[B_y = 152.4 \text{ N}. \]
Problem 5.141 Palentologists speculate that the stegosaurus could stand on its hind limbs for short periods to feed. Based on the free-body diagram shown and assuming that \(m = 2000 \) kg, determine the magnitudes of the forces \(B \) and \(C \) exerted by the ligament — muscle brace and vertical column, and determine the angle \(\alpha \).

Solution: Take the origin to be at the point of application of the force \(C \). The position vectors of the points of application of the forces \(B \) and \(W \) are:

\[
\mathbf{r}_B = -415 \mathbf{i} + 160 \mathbf{j} \text{ (mm)},
\]
\[
\mathbf{r}_W = 790 \mathbf{i} + 580 \mathbf{j} \text{ (mm)}.
\]

The forces are

\[
\mathbf{C} = C (\mathbf{i} \cos(90^\circ - \alpha) + \mathbf{j} \sin(90^\circ - \alpha))
\]
\[
= C (\mathbf{i} \sin \alpha + \mathbf{j} \cos \alpha).
\]

\[
\mathbf{B} = B (\mathbf{i} \cos(270^\circ - 22^\circ) + \mathbf{j} \sin(270^\circ - 22^\circ))
\]
\[
= B (-0.3746 \mathbf{i} - 0.9272 \mathbf{j}).
\]

\[
\mathbf{W} = -2(9.81) \mathbf{j} = -19.62 \mathbf{j} \text{ (kN)}.
\]

The moments about \(C \),

\[
\mathbf{M}_C = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-415 & 160 & 0 \\
-0.3746B & -0.9272B & 0 \\
790 & 580 & 0 \\
0 & -19.62 & 0
\end{vmatrix}
\]

\[
= 444.72B - 15499.8 = 0,
\]

from which

\[
B = \frac{15499.8}{444.72} = 34.85 \text{ kN}.
\]

The sums of the forces:

\[
\sum \mathbf{F}_x = (C \sin \alpha - 0.3746B) \mathbf{i} = 0,
\]

from which \(C \sin \alpha = 13.06 \text{ kN} \).

\[
\sum \mathbf{F}_y = (C \cos \alpha - 0.9272B - 19.62) \mathbf{j} = 0,
\]

from which \(C \cos \alpha = 51.93 \text{ kN} \).

The angle \(\alpha \) is

\[
\alpha = \tan^{-1} \left(\frac{13.06}{51.93} \right) = 14.1^\circ.
\]

The magnitude of \(C \),

\[
C = \sqrt{13.06^2 + 51.93^2} = 53.55 \text{ kN}.
\]
Problem 5.144 Assume that the force exerted on the head of the nail by the hammer is vertical, and neglect the hammer's weight.

(a) Draw the free-body diagram of the hammer.

(b) If $F = 10$ lb, what are the magnitudes of the forces exerted on the nail by the hammer and the normal and friction forces exerted on the floor by the hammer?

Solution: Denote the point of contact with the floor by B. The perpendicular distance from B to the line of action of the force is 11 in. The sum of the moments about B is $M_B = 11F - 2F_N = 0$, from which the force exerted by the nail head is $F_N = \frac{11F}{2} = 5.5F$. The sum of the forces:

$$\sum F_X = -F \cos 25 + H_x = 0,$$

from which the friction force exerted on the hammer is $H_x = 0.9063F$.

$$\sum F_Y = N_H - F_N + F \sin 25 = 0.$$

from which the normal force exerted by the floor on the hammer is $N_H = 5.077F$.

If the force on the handle is

$F = 10$ lb,

then $F_N = 55$ lb,

$H_x = 9.063$ lb,

and $N_H = 50.77$ lb.