Information Extraction from PET Images

Rosemary A Renaut and Wolfgang Stefan

Arizona State University

May 16, 2006, SIAM Imaging Conference 2006
Application in Alzheimer’s Disease Early Detection

Deconvolution

- Regularized Least Squares
- Regularized TLS
- Scaled Total Least Squares
- Numerical Results

Conclusions and Future Work
Example of typical PET scan

Typical PET Images show

- High noise content (non-Gaussian)
- High blurring
- Reconstruction artifacts
- Reconstruction using filtered backprojection
Dynamic PET scan

Dynamic data
- Very poor initial scans
- Noise levels change across scans
- Solve inverse problem to estimate kinetic parameters.
- What does it mean to improve these images?
Goals of the Study

- Improved Sensitivity for identifying features in images:

Longitudinal Studies of AD progression show changes
- Assessing disease state: AD or MCI?
- Assess impact of drug treatment

⇒ use imaging
Goals of the Study

- Improved Sensitivity for identifying features in images:
 - Longitudinal Studies of AD progression show changes
 - Assessing disease state- AD or MCI?
 - Assess impact of drug treatment
Goals of the Study

- Improved Sensitivity for identifying features in images:
 - Longitudinal Studies of AD progression show changes
 - Assessing disease state - AD or MCI?
 - Assess impact of drug treatment

- Equivalently, noninvasive assistance in AD studies.
Goals of the Study

- Improved Sensitivity for identifying features in images:
 - Longitudinal Studies of AD progression show changes
 - Assessing disease state- AD or MCI?
 - Assess impact of drug treatment

- Equivalently, noninvasive assistance in AD studies.

- ⇒ use imaging
Goals of the image processing

- **Improve** images to
Goals of the image processing

- **Improve** images to
 - **Quantify** data from dynamic scans.
Goals of the image processing

- **Improve** images to
 - **Quantify** data from dynamic scans.
 - **Register and compare** baseline and followup parametric scans.
Goals of the image processing

- **Improve** images to
 - **Quantify** data from dynamic scans.
 - **Register and compare** baseline and followup parametric scans
- **remove noise and artifacts from difference scan**
Goals of the image processing

- **Improve** images to
 - **Quantify** data from dynamic scans.
 - **Register and compare** baseline and followup parametric scans
- **remove noise and artifacts from difference scan**
- **Deblur images by deconvolution**
Inverse Problem

- Find f from $g = f \ast h + n$ given g and h with unknown n.
- g is the recorded image, f the unknown real image, h the point spread function (PSF) and n unknown noise.
Inverse Problem

- Find \(f \) from \(g = f \ast h + n \) given \(g \) and \(h \) with unknown \(n \).
- \(g \) is the recorded image, \(f \) the unknown real image, \(h \) the point spread function (PSF) and \(n \) unknown noise.
- Assuming normal distributed \(n \) yields including regularization

\[
\hat{f} = \arg \min_f \{ \|g - f \ast h\|^2_2 + \lambda R(f) \}
\]
Regularization Methods (review)

- Common methods are Tikhonov (TK).

\[R(f) = TK(f) = \int_{\Omega} |\nabla f(x)|^2 dx. \]
Regularization Methods (review)

- Common methods are Tikhonov (TK).

\[R(f) = TK(f) = \int_{\Omega} |\nabla f(x)|^2 dx. \]

- Total Variation (TV)

\[R(f) = TV(f) = \int_{\Omega} |\nabla f(x)| dx. \]
Regularization Methods (review)

- Common methods are Tikhonov (TK).
 \[R(f) = TK(f) = \int_\Omega |\nabla f(x)|^2 dx. \]

- Total Variation (TV)
 \[R(f) = TV(f) = \int_\Omega |\nabla f(x)| dx. \]

- Sparse deconvolution (\(L^1\)) (not relevant for PET images)
 \[R(f) = \|f\|_1 = \int_\Omega |f(x)| dx. \]
Regularization Review

\[
\hat{f} = \arg \min_f \left\{ \| g - f \ast h \|^2_2 + \lambda R(f) \right\}
\]

- \(\lambda\) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)
Regularization Review

\[\hat{f} = \arg \min_f \left\{ \| g - f \ast h \|_2^2 + \lambda R(f) \right\} \]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)
- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.
Regularization Review

\[\hat{f} = \arg \min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \} \]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)
- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.
- **TK yields a smooth** reconstruction.
\[\hat{f} = \arg \min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \} \]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)
- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.
- **TK yields a smooth** reconstruction.
- **L1 yields spike trains**
Optimization

- Objective function of the data fit term is **convex**
Optimization

- Objective function of the data fit term is **convex**
- TK is a linear least squares (LS) problem

\[
\hat{f} = \arg \min_f \{ \| g - Hf \|_2^2 + \lambda \| \nabla f \|_2^2 \}\]
Optimization

- Objective function of the data fit term is **convex**
- TK is a linear least squares (LS) problem

\[
\hat{f} = \arg\min_f \{ \|g - Hf\|_2^2 + \lambda \|\nabla f\|_2^2 \}
\]

- The TV objective function is **non differentiable**

\[
J(f) = \|g - Hf\|_2^2 + \lambda \|\nabla f\|_1
\]
Differentiability of TV - 1D (tensor product in 2D)

\[R(f) = \sum_i \|f_{i+1} - f_i\| \]

- for a small \(\beta \) define

\[R_\beta = \sum_i \sqrt{(f_{i+1} - f_i)^2 + \beta} \]
Differentiability of TV - 1D (tensor product in 2D)

\[R(f) = \sum_i \| f_{i+1} - f_i \| \]

- for a small \(\beta \) define

\[R_\beta = \sum_i \sqrt{(f_{i+1} - f_i)^2 + \beta} \]

- choose \(\beta \) in \(10^{-5} \) to \(10^{-9} \)
To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal).
To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)

A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
Numerical optimization scheme

- To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)
- A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
- Only a limited number of update vectors are kept, e.g. 10.
Numerical optimization scheme

- To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)
- A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
- Only a limited number of update vectors are kept, e.g. 10.
- **Evaluation** of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications)
Numerical optimization scheme

- To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)
- A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
- Only a limited number of update vectors are kept, e.g. 10.
- **Evaluation** of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications)
- Problems are usually large and many iterations are needed.
Point Spread Function

- The PSF is usually unknown or only estimated
- Estimates exist for PET scanners from phantom scans
- PSF is spatially variant and also depends on the scanned object
The PSF is usually unknown or only estimated.

Estimates exist for PET scanners from phantom scans.

PSF is spatially variant and also depends on the scanned object.

Hence even if provided PSF is always only an estimate.

For the PET scans presented here, a 6mm half width Gaussian was assumed.
Simulated PET

- On the left simulated PET from blurred segmented MRI scan using **Gaussian PSF** and noise added.
Simulated PET

- On the left simulated PET from blurred segmented MRI scan using **Gaussian PSF** and noise added.
- On the right deblurred PET with TV and known PSF.
Recover real PET image

- Reconstruction done using Filtered Back Projection
- PSF estimated by a Gaussian
- TV regularization
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind decon)
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind decon).
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind decon).
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
- Improvement requires better approximation of the PSF.
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind decon)
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
- Improvement requires better approximation of the PSF
- Total Least Squares
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]

- \(H \) is a Toeplitz matrix of Point Spread Function
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]
 - \(H \) is a Toeplitz matrix of Point Spread Function
 - TLS assumes error in \(H \) and \(g \) i.e.
 \[g = (H + E)f + n \]
Total least squares (TLS)

- Rewrite convolution as matrix vector product:

\[g = Hf + n \]

- \(H \) is a Toeplitz matrix of Point Spread Function

- TLS assumes error in \(H \) and \(g \) i.e.

\[g = (H + E)f + n \]

- Total least squares solution \(f_{TLS} \) solves

\[
\min \| E | n \|_F^2 \quad \text{subject to} \quad g = (H + E)f + n
\]
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]

- \(H \) is a Toeplitz matrix of Point Spread Function
- TLS assumes error in \(H \) and \(g \) i.e.
 \[g = (H + E)f + n \]

- Total least squares solution \(f_{TLS} \) solves
 \[
 \min \| E|n\|_F^2 \quad \text{subject to} \quad g = (H + E)f + n
 \]

- \(f_{TLS} \) can be found from SVD of \([H, g]\) (Golub et al)
The TLS solution minimizes Rayleigh Quotient:

\[
\min_f \frac{\|Hf - g\|^2_2}{1 + \|f\|^2_2}
\]
The TLS solution minimizes Rayleigh Quotient:

$$\min_f \frac{\|Hf - g\|^2_2}{1 + \|f\|^2_2}$$

include regularization:

$$\min_f \frac{\|Hf - g\|^2_2}{1 + \|f\|^2_2} + \lambda R(f)$$
Rayleigh Quotient Formulation

- The TLS solution minimizes Rayleigh Quotient:

\[
\min_f \frac{\|Hf - g\|^2_2}{1 + \|f\|^2_2}
\]

- Include regularization:

\[
\min_f \frac{\|Hf - g\|^2_2}{1 + \|f\|^2_2} + \lambda R(f)
\]

- \(p=2\) e.g. Golub et al (1999), Renaut et al (2005)
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[
\min \| E | n \|_F^2 \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma}
\]
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[
\min \|E|n\|_F^2 \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma}
\]

- Minimum is obtained as the minimum singular value of \([H, \gamma g]\)
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[\min \| E | n \|_F^2 \quad \text{subject to} \quad g = (H + E) f + \frac{n}{\gamma} \]

- Minimum is obtained as the minimum singular value of \([H, \gamma g]\)

- For flexibility use Rayleigh quotient formulation

\[\min_f \frac{\| Hf - g \|_2^2}{1 + \gamma^2 \| f \|_2^2} \]

- \(\gamma = 0 \) is the LS problem
- \(\gamma = 1 \) is the standard TLS problem
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[\min \| E | n \|_F^2 \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma} \]

- Minimum is obtained as the minimum singular value of \([H, \gamma g]\)

- For flexibility use Rayleigh quotient formulation

\[\min_f \frac{\| Hf - g \|_2^2}{1 + \gamma^2 \| f \|_2^2} \]

- \(\gamma = 0\) is the LS problem

- \(\gamma = 1\) is the standard TLS problem

- \(\gamma\) accounts for different noise levels in \(H\) and \(g\).
Regularize scaled RQ:

$$\min_f \frac{\|Hf - g\|^2_2}{1 + \gamma^2 \|f\|^2_2} + \lambda R(f)$$
Regularize scaled RQ:

\[
\min_f \frac{\|Hf - g\|^2}{1 + \gamma^2 \|f\|^2} + \lambda R(f)
\]

Permits careful investigation of effect of noise levels in \(H\) and \(g\).
Scaled Total Least Squares with Regularization

- Regularize scaled RQ:

\[
\min_f \frac{\|Hf - g\|_2^2}{1 + \gamma^2 \|f\|_2^2} + \lambda R(f)
\]

- Permits careful investigation of effect of noise levels in \(H\) and \(g\).

- Which is greater, the error in the PSF or the error in the measured data?
Test Problem Noisy Shepp Logan Phantom

- Use 128x128 Shepp Logan Phantom
 - Blur with Gaussian $h(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{|x|^2}{2\sigma^2}}$ with $\sigma = 1.5$ (6mm half width)
 - Take forward Radon transform with 45 angles
 - Add Poisson Noise to sinogram
 - Transform back, with filtered back projection
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

$\gamma^2 = 0$

$\gamma^2 = 7.3e - 9$

$\gamma^2 = 3.7e - 7$
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

\[\gamma^2 = 0 \quad \gamma^2 = 7.3e^{-9} \quad \gamma^2 = 3.7e^{-7} \]

- Scaling shows how to improve impact of badly chosen PSF.
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

$\gamma^2 = 0$

$\gamma^2 = 7.3e - 9$

$\gamma^2 = 3.7e - 7$

- Scaling shows how to improve impact of badly chosen PSF.
 - Scaling $\|Hf\| = \|g\| = 1$ (Notice for given image $\|g\|^2 \approx 10^9$)
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

- Scaling shows how to improve impact of badly chosen PSF.

- Scaling $\|Hf\| = \|g\| = 1$ (Notice for given image $\|g\|^2 \approx 10^9$)

- For scaled problem γ^2 is 1, 50, resp.
Real PET data
PSF 6 mm half width Gaussian, $\gamma = 0$ (LS), $3.7e-7$, $1e-5$ and $1e-4$ (top to bottom and left to right 0, 50, 1.4e3, 1.4e4)
Notice optimal λ by L-curve is similar for LS and Scaled TLS.
Observations

- RTLS with TV handles inexact PSFs better than simple RLS
Observations

- RTLS with TV handles inexact PSFs better than simple RLS
- Scaled RTVTLS with parameter γ in

$$
\min_f \frac{\|Hf - g\|_2^2}{1 + \gamma^2 \|f\|_2^2} + \lambda R(f)
$$

allows further tuning in case of an unknown PSF
Observations

- RTLS with TV handles inexact PSFs better than simple RLS.
- Scaled RTV TLS with parameter γ in

 $$
 \min_f \frac{\|Hf - g\|^2}{1 + \gamma^2\|f\|^2} + \lambda R(f)
 $$

 allows further tuning in case of an unknown PSF.
- Iterations are expensive.
Conclusions and Future Work

▶ Further investigation of RTVTLS and relation to RTVLS (also with scaling)
Conclusions and Future Work

- Further investigation of RTVTLS and relation to RTVLS (also with scaling)
- Improve efficiency of algorithms (methods of Guo and Renaut)
Conclusions and Future Work

- Further investigation of RTVTLS and relation to RTVLS (also with scaling)
- Improve efficiency of algorithms (methods of Guo and Renaut)
- Further interaction with medical consultants for impact and direction of the work.
Conclusions and Future Work

- Further investigation of RTVTLS and relation to RTVLS (also with scaling)
- Improve efficiency of algorithms (methods of Guo and Renaut)
- Further interaction with medical consultants for impact and direction of the work.
- What can be achieved with wavelets- see Wolfgang Stefan pm.
Acknowledgments

- Hongbin Guo (Total Least Squares)
- Haewon Nam and Kewei Chen for the data and discussions on PET imaging
- Supported by: Arizona Alzheimer’s Research Center and NIH NIBIB