Statistically-Based hybrid LSQR Newton method for Finding the Regularization Parameter: Application in Image Deblurring and Signal Restoration

Rosemary Renaut
Joint work with Jodi Mead and Iveta Hnetynkova

April 27, 2009
Outline

1. Motivation
 - Quick Review

2. Statistical Results for Least Squares
 - Summary of LS Statistical Results
 - Implications of Statistical Results for Regularized Least Squares

3. Newton algorithm
 - Algorithm with LSQR (Paige and Saunders)

4. Results

5. Conclusions and Future Work
Signal/Image Restoration:

Integral Model of Signal Degradation \(b(t) = \int K(t, s)x(s)ds \)

- \(K(t, s) \) describes *blur* of the signal.
- Convolutional model: *invariant* \(K(t, s) = K(t - s) \) is Point Spread Function (PSF).
- Typically sampling includes noise \(e(t) \), model is
 \[
 b(t) = \int K(t - s)x(s)ds + e(t)
 \]

Discrete model: given discrete samples \(b \), find samples \(x \) of \(x \)

- Let \(A \) discretize \(K \), assume known, model is given by
 \[
 b = Ax + e.
 \]
- Naïvely *invert* the system to find \(x \)!
Example 1-D Original and Blurred Noisy Signal

Original signal x.

Blurred and noisy signal b, Gaussian PSF.
The Solution: Regularization is needed

Naïve Solution

A Regularized Solution
Least Squares for $Ax = b$: A Quick Review

- Consider discrete systems: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$

$$Ax = b + e,$$

- **Classical Approach** Linear Least Squares

$$x_{LS} = \arg \min_x ||Ax - b||_2^2$$

- **Difficulty** x_{LS} is sensitive to changes in the right hand side b when A is ill-conditioned.

For convolutional models system is ill-posed.
Introduce Regularization to Pick a Solution

Weighted Fidelity with Regularization

- Regularize

\[x_{RLS}(\lambda) = \arg \min_x \{ \| b - Ax \|^2_{W_b} + \lambda^2 R(x) \}, \]

- Weighting matrix \(W_b \)
- \(R(x) \) is a regularization term
- \(\lambda \) is a regularization parameter which is unknown.
- Solution \(x_{RLS}(\lambda) \)
 - depends on \(\lambda \).
 - depends on regularization operator \(R \)
 - depends on the weighting matrix \(W_b \)
The Weighting Matrix: Some Assumptions

Given multiple measurements of data \(b \):

- Usually error in \(b \), \(e \) is an \(m \)-vector of random measurement errors with mean 0 and positive definite covariance matrix \(C_b = \text{E}(ee^T) \).
- For uncorrelated measurements \(C_b \) is diagonal matrix of standard deviations of the errors. (Colored noise)
- For white noise \(C_b = \sigma^2 I \).
- Weighting by \(W_b = C_b^{-1} \) in data fit term, theoretically, \(\tilde{e} \) are uncorrelated.
- Difficulty if \(W_b \) increases ill-conditioning of \(A \)!
Generalized Tikhonov Regularization With Weighting

Use $R(x) = \|D(x - x_0)\|^2$

\[
\hat{x} = \arg\min J(x) = \arg\min \{\|Ax - b\|_W^2 + \lambda^2 \|D(x - x_0)\|^2\}. \tag{1}
\]

- D is a suitable operator, often derivative approximation.
- Assume $\mathcal{N}(A) \cap \mathcal{N}(D) = \emptyset$
- x_0 is a reference solution, often $x_0 = 0$.

Question

Given D, W_b how do we find λ?
Example: solution for Increasing λ, $D = I$.
Example: solution for Increasing $\lambda, D = I$.
Example: solution for Increasing λ, $D = I$.
Example: solution for Increasing λ, $D = I$.
Choice of λ crucial

- Different algorithms yield different solutions.
- Examples:
 - Discrepancy Principle
 - Generalized Cross Validation (GCV)
 - L-Curve
 - Unbiased Predictive Risk (UPRE)
 - Residual Periodogram and related approaches (O’Leary et al)
- General Difficulties
 - Expensive (GCV, L, UPRE)
 - Not necessarily unique solution (GCV)
 - Oversmoothing (Discrepancy)
 - No kink in the L-curve
 - Require some analysis of resulting data.

A new χ^2 result extending the discrepancy principle
Background: Statistics of the Least Squares Problem

Theorem (Rao73: First Fundamental Theorem)

Let \(r \) be the rank of \(A \) and for \(b \sim N(Ax, \sigma_b^2 I) \), (errors in measurements are normally distributed with mean 0 and covariance \(\sigma_b^2 I \)), then

\[
J = \min_x \|Ax - b\|^2 \sim \sigma_b^2 \chi^2(m - r).
\]

\(J \) follows a \(\chi^2 \) distribution with \(m - r \) degrees of freedom: **Basically the Discrepancy Principle**

Corollary (Weighted Least Squares)

For \(b \sim N(Ax, C_b) \), \(W_b = C_b^{-1} \) then

\[
J = \min_x \|Ax - b\|^2_{W_b} \sim \chi^2(m - r).
\]

Sanity check: matrix \(A \) is square and full rank \(m = r \) mean(\(J \)) = 0.
Extension: Statistics of the Regularized Least Squares Problem

Theorem: χ^2 distribution of the regularized functional (Renaut/Mead 2008)

NOTE: Weighting Matrix on Regularization term.

\[\hat{x} = \arg\min_J J_D(x) = \arg\min \left\{ \|Ax - b\|_{W_b}^2 + \|(x - x_0)\|_{W_D}^2 \right\}, \quad W_D = D^T W_x D. \tag{2} \]

Assume

- W_b and W_x are symmetric positive definite.
- Problem is uniquely solvable $\mathcal{N}(A) \cap \mathcal{N}(D) \neq 0$.
- Moore-Penrose generalized inverse of W_D is C_D
- Statistics: Errors in the right hand side $e \sim N(0, C_b)$, and x_0 is known so that $(x - x_0) = f \sim N(0, C_D)$,
- x_0 is the mean vector of the model parameters.

Then

\[J_D(\hat{x}(W_D)) \sim \chi^2(m + p - n) \]
Significance of the χ^2 result

\[J_D \sim \chi^2(m + p - n) \]

For sufficiently large $\tilde{m} = m + p - n$

\[E(J(x(W_D))) = m + p - n \quad E(JJ^T) = 2(m + p - n) \]

Moreover

\[\tilde{m} - \sqrt{2\tilde{m}}z_{\alpha/2} < J(\hat{x}(W_D)) < \tilde{m} + \sqrt{2\tilde{m}}z_{\alpha/2}. \quad (3) \]

$z_{\alpha/2}$ is the relevant z-value for a χ^2-distribution with $\tilde{m} = m + p - n$ degrees
Key Aspects of the Proof I: The Functional J

Algebraic Simplifications: Rewrite functional as quadratic form

- Regularized solution given in terms of **resolution** matrix $R(W_D)$

\[
\hat{x} = x_0 + (A^T W_b A + D^T W_x D)^{-1} A^T W_b r, \quad (4)
\]

\[
= x_0 + R(W_D) W_b^{1/2} r, \quad r = b - A x_0
\]

\[
= x_0 + y(W_D). \quad (5)
\]

\[
R(W_D) = (A^T W_b A + D^T W_x D)^{-1} A^T W_b^{1/2} \quad (6)
\]

- Functional is given in terms of **influence matrix** $A(W_D)$

\[
A(W_D) = W_b^{1/2} A R(W_D) \quad (7)
\]

\[
J_D(\hat{x}) = r^T W_b^{1/2} (I_m - A(W_D)) W_b^{1/2} r, \quad \text{let} \quad \tilde{r} = W_b^{1/2} r \quad (8)
\]

\[
= \tilde{r}^T (I_m - A(W_D)) \tilde{r}. \quad \text{A Quadratic Form} \quad (9)
\]
Key Aspects of the Proof II: Properties of a Quadratic Form

\(\chi^2 \) distribution of Quadratic Forms \(x^T P x \) for normal variables (Fisher-Cochran Theorem)

- Components \(x_i \) are independent normal variables \(x_i \sim N(0, 1), i = 1 : n \).
- A necessary and sufficient condition that \(x^T P x \) has a central \(\chi^2 \) distribution is that \(P \) is idempotent, \(P^2 = P \). In which case the degrees of freedom of \(\chi^2 \) is \(\text{rank}(P) = \text{trace}(P) = n \).
- When the means of \(x_i \) are \(\mu_i \neq 0 \), \(x^T P x \) has a non-central \(\chi^2 \) distribution, with non-centrality parameter \(c = \mu^T P \mu \).
- A \(\chi^2 \) random variable with \(n \) degrees of freedom and centrality parameter \(c \) has mean \(n + c \) and variance \(2(n + 2c) \).
Key Aspects of the Proof III: Requires the GSVD

Lemma

Assume invertibility and \(m \geq n \geq p \). There exist unitary matrices \(U \in \mathbb{R}^{m \times m} \), \(V \in \mathbb{R}^{p \times p} \), and a nonsingular matrix \(X \in \mathbb{R}^{n \times n} \) such that

\[
A = U \begin{bmatrix} \Upsilon & \mathbf{0}_{(m-n) \times n} \\ \mathbf{0}_{(m-n) \times n} & \mathbf{I}_{n} \end{bmatrix} X^T \quad D = V \begin{bmatrix} M & \mathbf{0}_{p \times (n-p)} \\ \mathbf{0}_{p \times (n-p)} & \mathbf{I}_{(n-p)} \end{bmatrix} X^T,
\]

(10)

\(\Upsilon = \text{diag}(\nu_1, \ldots, \nu_p, 1, \ldots, 1) \in \mathbb{R}^{n \times n}, \quad M = \text{diag}(\mu_1, \ldots, \mu_p) \in \mathbb{R}^{p \times p}, \)

(11)

\(0 \leq \nu_1 \leq \cdots \leq \nu_p \leq 1, \quad 1 \geq \mu_1 \geq \cdots \geq \mu_p > 0, \quad \nu_i^2 + \mu_i^2 = 1, \quad i = 1, \ldots, p. \)

The Functional with the GSVD

Let \(\tilde{Q} = \text{diag}(\mu_1, \ldots, \mu_p, 0_{n-p}, I_{m-n}) \)

then \(J = \tilde{r}^T(I_m - A(W_D))\tilde{r} = \|\tilde{Q}U^T\tilde{r}\|_2^2 = \|k\|_2^2 \)
Proof IV: Statistical Distribution of the Weighted Residual

Covariance Structure

Errors in b are $\mathbf{e} \sim N(0, \mathbf{C}_b)$. Now b depends on x, $b = Ax$ hence we can show $b \sim N(Ax_0, \mathbf{C}_b + A\mathbf{C}_dA^T)$ (x_0 is mean of x)

Residual $\mathbf{r} = b - Ax \sim N(0, \mathbf{C}_b + A\mathbf{C}_dA^T)$.

$\tilde{\mathbf{r}} = W_b^{1/2}\mathbf{r} \sim N(0, I + \tilde{A}\mathbf{C}_d\tilde{A}^T)$, $\tilde{A} = W_b^{1/2}A$.

Use the GSVD

$I + \tilde{A}\mathbf{C}_d\tilde{A}^T = UQ^{-2}U^T$, $Q = \text{diag}(\mu_1, \ldots, \mu_p, I_{n-p}, I_{m-n})$

Now $\mathbf{k} = QU^T\tilde{r}$ then $\mathbf{k} \sim N(0, QU^T(UQ^{-2}U^T)QU) \sim N(0, I_m)$

But $J = ||QU^T\tilde{r}||^2 = ||\tilde{\mathbf{k}}||^2$, where $\tilde{\mathbf{k}}$ is the vector \mathbf{k} excluding components $p + 1 : n$. Thus

$J_D \sim \chi^2(m + p - n)$.
When mean of the parameters is not known, or \(x_0 = 0 \) is not the mean

Corollary: non-central \(\chi^2 \) distribution of the regularized functional

Recall

\[
\hat{x} = \text{argmin } J_D(x) = \text{argmin}\{ \|Ax - b\|_{W_b}^2 + \| (x - x_0) \|_{W_D}^2 \}, \quad W_D = D^T W_x D.
\]

Assume all assumptions as before, but \(\bar{x} \neq x_0 \) is the mean vector of the model parameters.
Let

\[
c = \|c\|_2^2 = \| \tilde{Q} U^T W_b^{1/2} A (\bar{x} - x_0) \|_2^2
\]

Then

\[
J_D \sim \chi^2(m + p - n, c)
\]

The functional at optimum follows a non central \(\chi^2 \) distribution
A further result when A is not of full column rank

The Rank Deficient Solution

Suppose A is not full column rank. Then the filtered solution can be written in terms of the GSVD

$$x_{\text{FILT}}(\lambda) = \sum_{i=p+1-r}^{p} \frac{\gamma_i^2}{\nu_i(\gamma_i^2 + \lambda^2)} s_i \tilde{x}_i + \sum_{i=p+1}^{n} s_i \tilde{x}_i = \sum_{i=1}^{p} \frac{f_i}{\nu_i} s_i \tilde{x}_i + \sum_{i=p+1}^{n} s_i \tilde{x}_i.$$

Here $f_i = 0, i = 1 : p - r, f_i = \gamma_i^2 / (\gamma_i^2 + \lambda^2), i = p - r + 1 : p$. This yields

$$J(x_{\text{FILT}}(\lambda)) \sim \chi^2(m - n + r, c)$$

If rank reduction can be found, degrees of freedom are reduced.
The Cost Functional follows a χ^2 Statistical Distribution

- Suppose degrees of freedom \tilde{m} and centrality parameter c then

$$E(J_D) = \tilde{m} + c \quad E(J_D J_D^T) = 2(\tilde{m}) + 4c$$

- Can we use this?
- **YES**: First Steps:
 - Try to find W_D so that $E(J) = \tilde{m} + c$
 - Mead presented expensive **nonlinear** algorithm when $c = 0$ for general W_D.
 - First find λ only.

Find $W_x = \lambda^2 I$
What do we need to apply the Theory?

Requirements

- **Covariance** C_b on data parameters b (or on model parameters x!)
- A priori information x_0, mean \bar{x}.
- But \bar{x} (and hence x_0) are not known.
- If not known use repeated data measurements calculate C_b and mean \bar{b}.
- Hence estimate the **centrality** parameter $E(b) = A E(x)$ implies $\bar{b} = A \bar{x}$.

Hence

$$c = \|c\|_2^2 = \|\tilde{Q}U^T W_b^{1/2} (\bar{b} - A x_0)\|_2^2$$

$$E(J_D) = E(\|\tilde{Q}U^T W_b^{1/2} (b - A x_0)\|_2^2) = m + p - n + \|c\|_2^2$$

- Given the GSVD estimate the degrees of freedom \tilde{m}.

Then we can use $E(J)$ to find λ
Assume x_0 is the mean (experimentalists do know something about the model parameters)

DESIGNING THE ALGORITHM: I

- Recall: if C_b and C_x are good estimates of covariance

$$|J_D(\hat{x}) - (m + p - n)|$$

should be small.

GOAL

Find W_x to make (3) tight: Single Variable case find λ

$$J_D(\hat{x}(\lambda)) \approx \tilde{m}$$
A Newton-line search Algorithm to find $\lambda = 1/\sigma$. (Basic algebra)

Newton to Solve $F(\sigma) = J_D(\sigma) - \tilde{m} = 0$

- We use $\sigma = 1/\lambda$, and $y(\sigma^{(k)})$ is the current solution for which

 $$x(\sigma^{(k)}) = y(\sigma^{(k)}) + x_0$$

 Then

 $$\frac{\partial}{\partial \sigma} J(\sigma) = -\frac{2}{\sigma^3} \|Dy(\sigma)\|^2 < 0$$

- Hence we have a basic Newton Iteration

 $$\sigma^{(k+1)} = \sigma^{(k)} (1 + \frac{1}{2} (\frac{\sigma^{(k)}}{\|Dy\|})^2 (J_D(\sigma^{(k)}) - \tilde{m})).$$

- Add a line search

 $$\sigma^{(k+1)} = \sigma^{(k)} (1 + \frac{\alpha^{(k)}}{2} (\frac{\sigma^{(k)}}{\|Dy\|})^2 (J_D(\sigma^{(k)}) - \tilde{m})).$$
Discussion on Convergence

- \(F \) is **monotonic decreasing** \((F'(\sigma_x) = -2\sigma_x\|Dy\|_2^2) \)
- Solution either exists and is **unique** for positive \(\sigma \)
- **Or no solution exists** \(F(0) < 0 \).
 - implies incorrect statistics of the model
- Theoretically, \(\lim_{\sigma \to \infty} F > 0 \) possible.
 - Equivalent to \(\lambda = 0 \). No regularization needed.

![Graph 1](image1.png)
![Graph 2](image2.png)
Practical Details of Algorithm

Find the parameter

- **Step 1**: Bracket the root by logarithmic search on σ to handle the asymptotes: yields sigmamax and sigmamin

- **Step 2**: Calculate step, with steepness controlled by tolD. Let $t = D y / \sigma^{(k)}$, where y is the current update, then

$$\text{step} = \frac{1}{2} \left(\frac{1}{\max \{ \| t \|, \text{tolD} \}} \right)^2 (J_D(\sigma^{(k)}) - \tilde{m})$$

- **Step 3**: Introduce line search $\alpha^{(k)}$ in Newton

$$\text{sigmanew} = \sigma^{(k)} (1 + \alpha^{(k)} \text{step})$$

$\alpha^{(k)}$ chosen such that sigmanew within bracket.
Prominent Details of Algorithm: Large Scale problems

Algorithm

Initialization

- Convert generalized Tikhonov problem to standard form. (if L is not invertible you just need to know how to find Ax and $A^T x$, and the null space of L)
- Use LSQR algorithm to find the bidiagonal matrix for the projected problem.
- Obtain a solution of the bidiagonal problem for given initial σ.

Subsequent Steps

- Increase dimension of space if needed with reuse of existing bidiagonalization. May also use smaller size system if appropriate.
- Each σ calculation of algorithm reuses saved information from the Lancos bidiagonalization.
Comparison with Standard LSQR hybrid Algorithm

- Algorithm can concurrently regularize and find λ
- Standard hybrid LSQR solves projected system then adds regularization.
- This is also possible: results of both approaches.

Advantages

Costs

- Needs only cost of standard LSQR algorithm with some updates for solution solves for iterated σ.
- The regularization introduced by LSQR projection may be useful for preventing problems with GSVD expansion.
- Makes algorithm viable for large scale problems.
Illustrating the Results for Problem Size 512: Two Standard Test Problems

Figure: Comparison for noise level 10%. On left $D = I$ and on right D is first derivative

- Notice L-curve and χ^2-LSQR perform well.
- UPRE does not perform well.
Real Data: Seismic Signal Restoration

The Data Set and Goal

- Real data set of 48 signals of length 3000.
- The point spread function is derived from the signals.
- Calculate the signal variance pointwise over all 48 signals.
- Goal: restore the signal x from $Ax = b$, where A is PSF matrix and b is given blurred signal.
- Method of Comparison- no exact solution known: use convergence with respect to downsampling.
Comparison High Resolution White noise

Greater contrast with χ^2. UPRE is insufficiently regularized. L-curve severely undersmooths (not shown). Parameters not consistent across resolutions.
THE UPRE SOLUTION: $x_0 = 0$ White Noise

Regularization Parameters are consistent: $\sigma = 0.01005$ all resolutions
Regularization quite consistent resolution 2 to 100
\[\sigma = 0.0000029, .0000029, .0000029, .0000057, .0000057 \]
Illustrating the Deblurring Result: Problem Size 65536

Example taken from RESTORE TOOLS Nagy et al 2007-8: 15% Noise

True Blurred Chi

Computational Cost is Minimal: Projected Problem Size is 15, $\lambda = 0.58$
Illustrating the progress of the Newton algorithm post LSQR

\[
\begin{align*}
\sigma &= 1 \quad \text{snr} = 3.4 \\
\sigma &= 2.3 \quad \text{snr} = 2.1 \\
\sigma &= 1.1 \quad \text{snr} = 3.4 \\
\sigma &= 10 \quad \text{snr} = -5.3 \\
\sigma &= 1.5 \quad \text{snr} = 3.2 \\
\sigma &= 1.1 \quad \text{snr} = 3.4 \\
\sigma &= 3.6 \quad \text{snr} = -0.15 \\
\sigma &= 1.2 \quad \text{snr} = 3.4 \\
\text{LSQR snr} &= -8.3
\end{align*}
\]
Illustrating the progress of the Newton algorithm with LSQR

\[\sigma = 1 \text{ snr} = 3.4 \]

\[\sigma = 10 \text{ snr} = -5.3 \]

\[\sigma = 5.2 \text{ snr} = -2.2 \]

\[\sigma = 1.1 \text{ snr} = 3.4 \]

\[\sigma = 1.1 \text{ snr} = 3.4 \]

LSQR snr = -8.3
Problem Grain noise 15% added for increasing subproblem size

Signal to noise ratio $10 \log_{10}(1/e)$
Conclusions

Observations

- A new statistical method for estimating regularization parameter
- Compares favorably with UPRE with respect to performance and compared to L-curve. (GCV is not competitive).
- Method can be used for large scale problems.
- **NOTE THAT THE PROBLEM SIZE OF HYBRID LSQR USED IS VERY SMALL**
- Requires estimate of column rank of A.
- Method is very efficient, Newton method is robust and fast.
- But *a priori* information is needed. This can be obtained directly from the data. e.g. Use local statistical information of image
Future Work

Other Results and Future Work

- Preconditioning
- How to apply Picard condition for GSVD to handle problems with robustness due to conditioning of C_b
- Software Package!
- Properties of the residual for finding rank?
- Diagonal Weighting Schemes
- Edge preserving regularization - Total Variation
- Bound Constraints (with Mead accepted).