Challenges in Improved Sensitivity of Quantification of PET Data for Alzheimer’s Disease Studies

Rosemary Renaut, Hongbin Guo, Kewei Chen and Wolfgang Stefan
Supported by Arizona Alzheimer’s Research Center and NIH

Arizona State University

March 30, 2007 Georgia State University Colloquium
Outline

1 PET Images

2 FDG-PET Quantification
 - The Standard Model
 - Practical Difficulties - obtaining the input function
 - Possible Solution: Arterial ROI TAC
 - Review

3 Parameter Estimation
 - Modeling the input function
 - The New Input
 - Estimating Parameters of the Model
 - Results

4 Image Restoration
 - Regularized Optimization
 - Numerical Results

5 Conclusions and Future Work
Outline

1. PET Images
2. FDG-PET Quantification
 - The Standard Model
 - Practical Difficulties - obtaining the input function
 - Possible Solution: Arterial ROI TAC
 - Review
3. Parameter Estimation
 - Modeling the input function
 - The New Input
 - Estimating Parameters of the Model
 - Results
4. Image Restoration
 - Regularized Optimization
 - Numerical Results
5. Conclusions and Future Work
Outline

1. PET Images
2. FDG-PET Quantification
 - The Standard Model
 - Practical Difficulties - obtaining the input function
 - Possible Solution: Arterial ROI TAC
 - Review
3. Parameter Estimation
 - Modeling the input function
 - The New Input
 - Estimating Parameters of the Model
 - Results
4. Image Restoration
 - Regularized Optimization
 - Numerical Results
5. Conclusions and Future Work
Outline

1. PET Images
2. FDG-PET Quantification
 - The Standard Model
 - Practical Difficulties - obtaining the input function
 - Possible Solution: Arterial ROI TAC
 - Review
3. Parameter Estimation
 - Modeling the input function
 - The New Input
 - Estimating Parameters of the Model
 - Results
4. Image Restoration
 - Regularized Optimization
 - Numerical Results
5. Conclusions and Future Work
Outline

1. PET Images
2. FDG-PET Quantification
 - The Standard Model
 - Practical Difficulties - obtaining the input function
 - Possible Solution: Arterial ROI TAC
 - Review
3. Parameter Estimation
 - Modeling the input function
 - The New Input
 - Estimating Parameters of the Model
 - Results
4. Image Restoration
 - Regularized Optimization
 - Numerical Results
5. Conclusions and Future Work
Example of typical PET scan

Typical PET Images show
- High noise content (non-Gaussian)
Example of typical PET scan

Typical PET Images show
- High noise content (non-Gaussian)
- High blurring
- *Partial volume Effects*
Example of typical PET scan

Typical PET Images show
- High noise content (non Gaussian)
- High blurring
- Partial volume Effects
- Reconstruction artifacts
- Reconstruction using filtered backprojection
Example of Dynamic PET series
Example of Dynamic PET series
Example of Dynamic PET series

Dynamic data
Example of Dynamic PET series

Dynamic data
- Very poor initial scans
- Noise levels change across scans
- Time interval increases with scan
Example of Dynamic PET series

Dynamic data
- Very poor initial scans
- Noise levels change across scans
- Time interval increases with scan
- Movement of patient
- Physiological Movement
Goals/Methods of the Study

- Improved Sensitivity for identifying features in images:
 - Identify anomalies in single images.
 - Identify changes over time: Longitudinal Studies of AD
 - Assessing disease state- AD or MCI (mild cognitive impairment)
 - Assess impact of drug treatment

- Noninvasive assistance in AD studies.

- Solve Ordinary Differential System of Equations.

- Use basic **Inverse Problems**, **Optimization** and **Statistics**.
Goals/Methods of the Study

- Improved Sensitivity for identifying features in images:
 - Identify anomalies in single images.
 - Identify changes over time: Longitudinal Studies of AD
 - Assessing disease state- AD or MCI (mild cognitive impairment)
 - Assess impact of drug treatment

- Noninvasive assistance in AD studies.

- Solve Ordinary Differential System of Equations.

- Use basic Inverse Problems, Optimization and Statistics.
Goals/Methods of the Study

- **Improved Sensitivity for identifying features in images:**
 - Identify anomalies in single images.
 - Identify changes over time: Longitudinal Studies of AD
 - Assessing disease state- AD or MCI (mild cognitive impairment)
 - Assess impact of drug treatment

- **Noninvasive assistance in AD studies.**
- **Solve Ordinary Differential System of Equations.**
- **Use basic Inverse Problems, Optimization and Statistics.**
Goals/Methods of the Study

- Improved Sensitivity for identifying features in images:
 - Identify anomalies in single images.
 - Identify changes over time: Longitudinal Studies of AD
 - Assessing disease state- AD or MCI (mild cognitive impairment)
 - Assess impact of drug treatment

- Noninvasive assistance in AD studies.

- Solve Ordinary Differential System of Equations.

- Use basic Inverse Problems, Optimization and Statistics.
Goals/Methods of the Study

- Improved Sensitivity for identifying features in images:
 - Identify anomalies in single images.
 - Identify changes over time: Longitudinal Studies of AD
 - Assessing disease state- AD or MCI (mild cognitive impairment)
 - Assess impact of drug treatment

- Noninvasive assistance in AD studies.

- Solve Ordinary Differential System of Equations.

- Use basic **Inverse Problems, Optimization** and **Statistics**.
PET Imaging System **Input**, Response and **Output**

Input Tracer Density in plasma

\[u(t) \]
PET Imaging System Input, Response and Output

Brain Tissue: Impulse Response Function (IRF)

\[h(t, K_1, k_2, k_3, k_4) \]
Output: Tissue time activity curve

\[y(t) \]
Convolution Solution of Differential Equation

\[y(t) = u \otimes h \]
FDG-PET Compartmental Modelling

The diagram illustrates the metabolic pathways involving glucose and FDG (Fluorodeoxyglucose) in biological systems. Key components and processes are highlighted:

- Glucose compartments
- FDG compartments
- Metabolic fluxes indicated by arrows
- Kinetic parameters (K1, K2, K3, K4)

These pathways are crucial for understanding tissue metabolism and disease states, as inferred from PET (Positron Emission Tomography) imaging.
The Differential System of Equations

\[
\begin{align*}
\dot{y}_1 &= K_1 u(t) - (k_2 + k_3) y_1(t) + k_4 y_2(t) \\
\dot{y}_2 &= k_3 y_1(t) - k_4 y_2(t).
\end{align*}
\]

1. \(K_1\) and \(k_2\)–FDG transport rate
2. \(k_3\) and \(k_4\) phosphorylation and dephosphorylation rate.
3. \(\text{LCMRglc: } \frac{K_1 k_3}{k_2 + k_3} \frac{C_p}{LC} = K \frac{C_p}{LC}\).
4. \(y_1(t)\) is the FDG in tissue
5. \(y_2(t)\) the phosphorylated FDG in tissue.
6. \(u(t)\) is the FDG input in plasma.
The Differential System of Equations

\[\begin{align*}
\dot{y}_1 &= K_1 u(t) - (k_2 + k_3) y_1(t) + k_4 y_2(t) \\
\dot{y}_2 &= k_3 y_1(t) - k_4 y_2(t).
\end{align*} \] (1)

- K_1 and k_2–FDG transport rate
- k_3 and k_4 phosphorylation and dephosphorylation rate.
- LCMRglc: \(\frac{K_1 k_3}{k_2 + k_3} \frac{C_p}{LC} = K \frac{C_p}{LC} \).
- $y_1(t)$ is the FDG in tissue
- $y_2(t)$ the phosphorylated FDG in tissue.
- $u(t)$ is the FDG input in plasma.
The Differential System of Equations

\[
\begin{align*}
\dot{y}_1 &= K_1 u(t) - (k_2 + k_3)y_1(t) + k_4 y_2(t) \\
\dot{y}_2 &= k_3 y_1(t) - k_4 y_2(t).
\end{align*}
\] (1)

- \(K_1\) and \(k_2\)–FDG transport rate
- \(k_3\) and \(k_4\) phosphorylation and dephosphorylation rate.
- LCMRglc: \(\frac{K_1 k_3}{k_2 + k_3} \frac{C_p}{LC} = K \frac{C_p}{LC}\).
- \(y_1(t)\) is the FDG in tissue
- \(y_2(t)\) the phosphorylated FDG in tissue.
- \(u(t)\) is the FDG input in plasma.
The Differential System of Equations

\[
\begin{align*}
\dot{y}_1 & = K_1 u(t) - (k_2 + k_3)y_1(t) + k_4 y_2(t) \\
\dot{y}_2 & = k_3 y_1(t) - k_4 y_2(t).
\end{align*}
\]

(1)

- K_1 and k_2—FDG transport rate
- k_3 and k_4 phosphorylation and dephosphorylation rate.
- LCMRglc: \(\frac{K_1 k_3}{k_2 + k_3} \frac{C_p}{LC} = K \frac{C_p}{LC} \).
- $y_1(t)$ is the FDG in tissue
- $y_2(t)$ the phosphorylated FDG in tissue.
- $u(t)$ is the FDG input in plasma.
The Differential System of Equations

\[
\begin{align*}
\dot{y}_1 &= K_1 u(t) - (k_2 + k_3)y_1(t) + k_4 y_2(t) \\
\dot{y}_2 &= k_3 y_1(t) - k_4 y_2(t).
\end{align*}
\] (1)

- K_1 and k_2–FDG transport rate
- k_3 and k_4 phosphorylation and dephosphorylation rate.
- LCMRglc: \(\frac{K_1 k_3}{k_2 + k_3} \frac{C_p}{L C} = K \frac{C_p}{L C} \)
- $y_1(t)$ is the FDG in tissue
- $y_2(t)$ the phosphorylated FDG in tissue.
- $u(t)$ is the FDG input in plasma.
Given $u(t)$ and $y(t) = y_1(t) + y_2(t)$, estimate K_1, k_2, k_3, k_4 and K.

Let $k_4 = 0$, the solution of the system is easily found and we have

$$y(t) = u(t) \otimes h(t, K_1, k_2, k_3)$$

$$= u(t) \otimes \left(\frac{K_1 k_3}{k_2 + k_3} + \frac{K_1 k_2}{k_2 + k_3} e^{-(k_2 + k_3)t} \right).$$

This gives the nonlinear least squares estimation

$$\min_{K_1, k_2, k_3} \| y(t) - u(t) \otimes h(t, K_1, k_2, k_3) \|_W.$$

Here $\| \cdot \|_W$ indicates that this is in a weighted norm.
Obtain Input Function by Blood Sampling

- **Gold Standard**: arterial sampling causes discomfort. There are potential risks, e.g., arterial thrombosis, arterial sclerosis, and ischemia to the extremity.

- **Arterialized venous sampling method**, the limb is heated to avoid discomfort, (Phelps et al., 1979). Still requires frequent blood sampling.

- **Population based input function**, (Takikawa et al., 1993 and Erberl et al., 1997). Not individual specific.

- **Challenge** Reducing/avoiding blood sampling.
Obtain Input Function by Blood Sampling

- **Gold Standard**: arterial sampling causes discomfort. There are potential risks, e.g., arterial thrombosis, arterial sclerosis, and ischemia to the extremity.

- **Arterialized venous sampling method**, the limb is heated to avoid discomfort, (Phelps *et al.*, 1979). Still requires frequent blood sampling.

- **Challenge** Reduce/avoid blood sampling.
Gold Standard: arterial sampling causes discomfort. There are potential risks, e.g., arterial thrombosis, arterial sclerosis, and ischemia to the extremity.

Arterialized venous sampling method, the limb is heated to avoid discomfort,(Phelps *et al*, 1979). Still requires frequent blood sampling.

Challenge Reduce/avoid blood sampling.
Gold Standard: arterial sampling causes discomfort. There are potential risks, e.g., arterial thrombosis, arterial sclerosis, and ischemia to the extremity.

Arterialized venous sampling method, the limb is heated to avoid discomfort, (Phelps et al, 1979). Still requires frequent blood sampling.

Challenge Reduce/avoid blood sampling.
Using the Region of Interest (ROI): Carotid Arterial ROI TAC and Blood Samples

Blood ROI TAC

Tissue ROI TAC

Blood samples

Avg Blood TAC (ABTAC)
Recent Representative Methods—Without blood samples

- **Image-derived input function**: no blood samples. Blood ROIs are identified by aligning MR and PET, and average blood TAC, \(v(t) \), is used. (Litton, 1997, Liptrot *et al*, 2004, Wahl *et al*, 1999).

- **Simultaneous Estimation of Input and Output (SIME)**:

 \[
 u(t) = (A_1 t - A_2 - A_3) e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t} + A_3 e^{-\lambda_3 t}
 \]

 Let \(P_m = \{k_1, \cdots, k_4\} \) for \(m^{th} \) tissue TACs, and solve (6 input parameters) (Feng *et al*, 1997).

 \[
 \min_{A_i, \lambda_j, P_m} \sum_{m=1}^{M} \sum_{n=1}^{N} w_{mn} \left\{ y_m(t_n) - (h_m(t, P_m) \otimes u(t, A_i, \lambda_j))_n \right\}^2.
 \]

- **Difficulties**: former requires MR images and registration, latter assumes \(y \) not contaminated by partial volume or spillover.
Recent Representative Methods—Without blood samples

- **Image-derived input function:** no blood samples. Blood ROIs are identified by aligning MR and PET, and average blood TAC, \(v(t) \), is used. (Litton, 1997, Liptrot *et al*, 2004, Wahl *et al*, 1999).

- **Simultaneous Estimation of Input and Output (SIME):**

 \[
 u(t) = (A_1 t - A_2 - A_3) e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t} + A_3 e^{-\lambda_3 t}
 \]

 Let \(P_m = \{k_1, \ldots, k_4\} \) for \(m^{th} \) tissue TACS, and solve (6 input parameters) (Feng *et al*, 1997).

 \[
 \min_{A_i, \lambda_j, P_m} \sum_{m=1}^{M} \sum_{n=1}^{N} w_{mn} \left\{ y_m(t_n) - (h_m(t, P_m) \otimes u(t, A_i, \lambda_j))_n \right\}^2 .
 \]

- **Difficulties:** former requires MR images and registration, latter assumes \(y \) not contaminated by partial volume or spillover.
Recent Representative Methods—Without blood samples

- **Image-derived input function:** no blood samples. Blood ROIs are identified by aligning MR and PET, and average blood TAC, $v(t)$, is used. (Litton, 1997, Liptrot *et al*, 2004, Wahl *et al*, 1999).

- **Simultaneous Estimation of Input and Output (SIME):**

 $u(t) = (A_1 t - A_2 - A_3) e^{-\lambda_1 t} + A_2 e^{-\lambda_2 t} + A_3 e^{-\lambda_3 t}$

 Let $\mathcal{P}_m = \{k_1, \cdots, k_4\}$ for m^{th} tissue TACS, and solve (6 input parameters) (Feng *et al*, 1997).

 $$\min_{A_i, \lambda_j, \mathcal{P}_m} \sum_{m=1}^M \sum_{n=1}^N w_{mn} \left\{ y_m(t_n) - (h_m(t, \mathcal{P}_m) \otimes u(t, A_i, \lambda_j))_n \right\}^2.$$

- **Difficulties:** former requires MR images and registration, latter assumes y not contaminated by partial volume or spillover.
Using a Limited Number of Blood Samples

- **SIME based method**, (Sanabria-Bohorquez *et al*, 2003), Let

 \[u(t) = sf \cdot F(t) \cdot v(t) + A \cdot te^{-Bt} \quad F(t) = a \cdot e^{-bt} + 1 - a \]

 where \(F(t) \) models the \([^{11}C]\)-FMZ fraction in plasma, \(b \) is decay, and \(sf \) and \(a \) are determined using three late blood samples. Then \(A \) and \(B \) are calculated by SIME with information from tissue TACs.

- **Linear relationship based method**: (Chen *et al*, 1998, 2007), assume \(v(t) = \alpha \cdot u(t) + \beta \cdot y(t) \). Solve for \(\alpha \) and \(\beta \) by using three late venous samples to correct partial volume and spillover effects.

- **Proposed method** (Guo *et al*). Model late portion by \(A \cdot e^{-\lambda(t-\tau)} \delta \) and early portion by correcting the partial volume of \(v(t) \). Do not use the later portion of \(v(t) \).
Real Data

- FDG-PET data from 951/31 ECAT for **18 healthy subjects**.
- Images are reconstructed by filtered back projection. Each reconstructed data set includes **31 slices** with 3.375mm separation and each slice has **128 × 128 voxels** with resolution of approximately 9.5 mm full width at half maximum (FWHM).
- The **scanning time durations** in minutes for the frames are 0.2, 8 × 0.0333, 2 × 0.1667, 0.2, 0.5, 2 × 1, 2 × 1.5, 3.5, 2 × 5, 10 and 30.
- Sequential **arterial blood samples** are drawn every 5 seconds for the first minute, every 10 seconds for the second minute, every 30 seconds for the next 2 minutes, the 5, 6, 8, 10, 12, 15, 20, 25, 30, 40, 50 and 60 minutes. We represent the blood samples by $u_{bs}(t_j), j = 1, 2, \cdots, 34$.
Compare CA-ROI TAC with Blood Samples

Early Time curves compare

Later time curves compare
Proposed Model for the input function

Formulation

\[u_e(t, \theta, \lambda, \delta) = \begin{cases}
\theta \cdot v(t) & t \in [0, \tau] \\
\theta \cdot v(\tau) \cdot e^{-\lambda(t-\tau)\delta} & t \in [\tau, T]
\end{cases} \] (Window 1)

1. \(\tau \) separates \(W_1 \) and \(W_2 \).
 - On \(W_1 \), the curve is high quality, spillover can be ignored.
 - On \(W_2 \) use the analytic formula.

\(\tau \) is a parameter that has to be determined so as to trade off between the best characteristics of the two windows.

2. \(\theta \cdot v(\tau) \) assures continuity at \(\tau \).

3. Blood samples at \(t = 10, 20 \) and 60 min. are used in fitting to obtain the model’s parameters.
Rationale

Compare the proposed formulation with two standard models

\[
\begin{align*}
 u_{\text{Phelps}} &= A_1 e^{-\lambda_1(t-\tau)} + A_2 e^{-\lambda_2(t-\tau)} + A_3 e^{-\lambda_3(t-\tau)}, \\
 u_{\text{Feng}} &= (A_1(t - \tau_0) - A_2 - A_3)e^{-\lambda_1(t-\tau_0)} + A_2 e^{-\lambda_2(t-\tau_0)} + A_3 e^{-\lambda_3(t-\tau_0)}
\end{align*}
\]

Fit blood samples on \(W_2 \) using...
Compare the proposed formulation with two standard models

\[u_{Phelps} = A_1 e^{-\lambda_1(t-\tau)} + A_2 e^{-\lambda_2(t-\tau)} + A_3 e^{-\lambda_3(t-\tau)}, \]

\[u_{Feng} = (A_1(t-\tau_0) - A_2 - A_3)e^{-\lambda_1(t-\tau_0)} + A_2 e^{-\lambda_2(t-\tau_0)} + A_3 e^{-\lambda_3(t-\tau_0)}, \]

Fit blood samples on \(W_2 \) using
Rationale

Compare the proposed formulation with two standard models

\[u_{Phelps} = A_1 e^{-\lambda_1(t-\tau)} + A_2 e^{-\lambda_2(t-\tau)} + A_3 e^{-\lambda_3(t-\tau)} , \]
\[u_{Feng} = (A_1(t-\tau_0) - A_2 - A_3) e^{-\lambda_1(t-\tau_0)} + A_2 e^{-\lambda_2(t-\tau_0)} + A_3 e^{-\lambda_3(t-\tau_0)} , \]

Fit blood samples on \(W_2 \) using

- all available nodes \(t_i \geq \tau \)
Rationale

Compare the proposed formulation with two standard models

\[u_{Phelps} = A_1 e^{-\lambda_1(t-\tau)} + A_2 e^{-\lambda_2(t-\tau)} + A_3 e^{-\lambda_3(t-\tau)}, \]

\[u_{Feng} = (A_1(t-\tau_0) - A_2 - A_3)e^{-\lambda_1(t-\tau_0)} + A_2 e^{-\lambda_2(t-\tau_0)} + A_3 e^{-\lambda_3(t-\tau_0)} \]

Fit blood samples on W_2 using

- just using nodes at τ and 10, 20, and 60 min.
Fit the proposed formula by blood samples at $t = 10, 20$ and 60 min. to estimate parameters θ, λ and δ.
Extrapolation for Different Subjects for $t < 10$

Fit the proposed formula by blood samples at $t = 10, 20$ and 60 min. to estimate parameters θ, λ and δ.

\[\theta = 11.19 \]
Extrapolation for Different Subjects for $t < 10$

Fit the proposed formula by blood samples at $t = 10, 20$ and 60 min. to estimate parameters θ, λ and δ.

$$\theta = 1.001$$
Fit at $t = 10, 20$ and 60 min. and $[\tau, \theta \ast \nu(\tau)]$.
Interpolation and Picking θ

Fit at $t = 10, 20$ and 60 min. and $[\tau, \theta \ast v(\tau)]$.

$\theta = 6$
Interpolation and Picking θ

Fit at $t = 10, 20$ and 60 min. and $[\tau, \theta \ast v(\tau)]$.

$\theta = 2.8$

θ is the only independent parameter, once a good θ is obtained, the whole curve is recovered.
Overview of fitting: The choice of θ is important

θ must be chosen to fit the measured data
Overview of fitting: The choice of θ is important

θ must be chosen to fit the measured data
Overview of fitting: The choice of θ is important

θ must be chosen to fit the measured data
Overview of fitting: The choice of θ is important

θ must be chosen to fit the measured data
θ is the Only Independent Parameter

Method

For a given value of θ, parameters λ, δ are determined by

\[
[\lambda(\theta), \delta(\theta)] = \arg\min_{\lambda, \delta} \sum_{i=1}^{3} \left[\theta v(\tau) e^{-\lambda(t_i - \tau)^\delta} - u_{bs}(t_i) \right]^2.
\]

where \((t_i, u_{bs}(t_i))\), \(i = 1, 2, 3\) are venous blood samples.

θ is the inverse of the recovery coefficient, and measures the ability to recover the actual blood data from the brain measurement.
θ is the Only Independent Parameter

Method

For a given value of \(\theta \), parameters \(\lambda, \delta \) are determined by

\[
[\lambda(\theta), \delta(\theta)] = \arg\min_{\lambda, \delta} \sum_{i=1}^{3} \left[\theta v(\tau) e^{-\lambda(t_i-\tau)^\delta} - u_{bs}(t_i) \right]^2.
\]

where \((t_i, u_{bs}(t_i)) \), \(i = 1, 2, 3 \) are venous blood samples.

\(\theta \) is the inverse of the recovery coefficient, and measures the ability to recover the actual blood data from the brain measurement.
Nonlinear Method

Method (Here using two TTAC curves obtained by clustering)

\[
\min_{\theta, P_1, P_2, \alpha_i} \sum_{i=1}^{2} \sum_{j=1}^{n} w_{ij} \left[y_i(t_j) - \alpha_i \cdot (h_i \otimes u_e)_j - (1 - \alpha_i) \cdot u_e(t_j, \theta) \right]^2,
\]

subject to

\[
0.015 \leq K_1^{(i)} \leq 0.3, \quad 0.024 \leq k_2^{(i)} \leq 0.54, \quad 0.01 \leq k_3^{(i)} \leq 0.2,
\]

\[
0.9 \leq \alpha_i \leq 1, \quad 1.2 \leq \theta \leq 4
\]

1. Weight \(w_{ij} = \Delta t_j / y_i(t_j) \)
2. Parameter \(\alpha_i \) corrects spillover from blood to tissue
3. Tissue clusters \(y_i(t) \) are generated by a fast PET data clustering algorithm, (Guo et al, 2003).
Nonlinear Method

Method (Here using two TTAC curves obtained by clustering)

\[
\min_{\theta, P_1, P_2, \alpha_i} \sum_{i=1}^{2} \sum_{j=1}^{n} w_{ij} \left[y_i(t_j) - \alpha_i \cdot (h_i \otimes u_e)_j - (1 - \alpha_i) \cdot u_e(t_j, \theta) \right]^2,
\]

subject to

\[
\begin{align*}
0.015 \leq k_1^{(i)} & \leq 0.3, \\
0.024 \leq k_2^{(i)} & \leq 0.54, \\
0.01 \leq k_3^{(i)} & \leq 0.2, \\
0.9 \leq \alpha_i & \leq 1, \\
1.2 \leq \theta & \leq 4
\end{align*}
\]

1. **Weight** \(w_{ij} = \Delta t_j / y_i(t_j) \)

2. **Parameter** \(\alpha_i \) corrects spillover from blood to tissue

3. **Tissue clusters** \(y_i(t) \) are generated by a fast PET data clustering algorithm, (Guo et al, 2003).
Nonlinear Method

Method (Here using two TTAC curves obtained by clustering)

\[
\min_{\theta, P_1, P_2, \alpha_i} \sum_{i=1}^{2} \sum_{j=1}^{n} w_{ij} \left[y_i(t_j) - \alpha_i \cdot (h_i \otimes u_e)_j - (1 - \alpha_i) \cdot u_e(t_j, \theta) \right]^2,
\]

subject to

\[
0.015 \leq K_1^{(i)} \leq 0.3, \quad 0.024 \leq k_2^{(i)} \leq 0.54, \quad 0.01 \leq k_3^{(i)} \leq 0.2, \\
0.9 \leq \alpha_i \leq 1, \quad 1.2 \leq \theta \leq 4
\]

1. **Weight** \(w_{ij} = \Delta t_j / y_i(t_j) \)
2. **Parameter** \(\alpha_i \) corrects spillover from blood to tissue
3. **Tissue clusters** \(y_i(t) \) are generated by a fast PET data clustering algorithm, (Guo et al, 2003).
Nonlinear Method

Method (Here using two TTAC curves obtained by clustering)

\[
\min_{\theta, P_1, P_2, \alpha_i} \sum_{i=1}^{2} \sum_{j=1}^{n} w_{ij} \left[y_i(t_j) - \alpha_i \cdot (h_i \otimes u_e)_j - (1 - \alpha_i) \cdot u_e(t_j, \theta) \right]^2,
\]

subject to

\[
0.015 \leq K_1^{(i)} \leq 0.3, \quad 0.024 \leq k_2^{(i)} \leq 0.54, \quad 0.01 \leq k_3^{(i)} \leq 0.2,
\]

\[
0.9 \leq \alpha_i \leq 1, \quad 1.2 \leq \theta \leq 4
\]

1. **Weight** \(w_{ij} = \Delta t_j / y_i(t_j)\)

2. **Parameter** \(\alpha_i\) corrects spillover from blood to tissue

3. **Tissue clusters** \(y_i(t)\) are generated by a fast PET data clustering algorithm, (Guo et al, 2003).
Representative Results
Representative Results
Representative Results
Representative Results

![Graph showing counts/min vs log of time (min.)]
Table: Linear regression: K calculated by the Patlak method for 50 clusters of each subject, comparing blood samples u_{bs} and estimated input function u_e.

<table>
<thead>
<tr>
<th>Subject</th>
<th>u_{bs} mean K ± standard deviation</th>
<th>u_e mean K ± standard deviation</th>
<th>Correlation Coefficient</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
</table>
Tabulated Results: Calculation compared to Patlak straight line fit

Table: Linear regression: K calculated by the Patlak method for 50 clusters of each subject, comparing blood samples u_{bs} and estimated input function u_e.

<table>
<thead>
<tr>
<th>Subject</th>
<th>u_{bs} mean K ± standard deviation</th>
<th>u_e mean K ± standard deviation</th>
<th>Correlation Coefficient</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3.3963e-02 ± 7.4e-03$</td>
<td>$3.4371e-02 ± 7.4e-03$</td>
<td>$9.9996e-01$</td>
<td>1.008</td>
<td>$1.5e-04$</td>
</tr>
</tbody>
</table>
Tabulated Results: Calculation compared to Patlak straight line fit

Table: Linear regression: K calculated by the Patlak method for 50 clusters of each subject, comparing blood samples u_{bs} and estimated input function u_e.

<table>
<thead>
<tr>
<th>Subject</th>
<th>u_{bs} mean K ± standard deviation</th>
<th>u_e mean K ± standard deviation</th>
<th>Correlation Coefficient</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3.3963e-02 ± 7.4e-03$</td>
<td>$3.4371e-02 ± 7.4e-03$</td>
<td>$9.9996e-01$</td>
<td>1.008</td>
<td>$1.5e-04$</td>
</tr>
<tr>
<td>2</td>
<td>$2.4923e-02 ± 4.9e-03$</td>
<td>$2.6501e-02 ± 5.0e-03$</td>
<td>$9.9887e-01$</td>
<td>1.022</td>
<td>$1.0e-03$</td>
</tr>
</tbody>
</table>
Table: Linear regression: K calculated by the Patlak method for 50 clusters of each subject, comparing blood samples u_{bs} and estimated input function u_e.

<table>
<thead>
<tr>
<th>Subject</th>
<th>u_{bs} mean K ± standard deviation</th>
<th>u_e mean K ± standard deviation</th>
<th>Correlation Coefficient</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3963e−02 ± 7.4e−03</td>
<td>3.4371e−02 ± 7.4e−03</td>
<td>9.996e−01</td>
<td>1.008</td>
<td>1.5e−04</td>
</tr>
<tr>
<td>2</td>
<td>2.4923e−02 ± 4.9e−03</td>
<td>2.6501e−02 ± 5.0e−03</td>
<td>9.9887e−01</td>
<td>1.022</td>
<td>1.0e−03</td>
</tr>
<tr>
<td>3</td>
<td>2.3531e−02 ± 5.6e−03</td>
<td>2.4157e−02 ± 5.7e−03</td>
<td>9.997e−01</td>
<td>1.029</td>
<td>−4.8e−05</td>
</tr>
<tr>
<td>4</td>
<td>2.6678e−02 ± 3.7e−03</td>
<td>2.6811e−02 ± 3.7e−03</td>
<td>9.991e−01</td>
<td>1.000</td>
<td>1.3e−04</td>
</tr>
<tr>
<td>5</td>
<td>3.0645e−02 ± 5.9e−03</td>
<td>3.0775e−02 ± 5.8e−03</td>
<td>9.9945e−01</td>
<td>0.984</td>
<td>6.1e−04</td>
</tr>
<tr>
<td>6</td>
<td>3.1183e−02 ± 6.3e−03</td>
<td>3.0731e−02 ± 6.1e−03</td>
<td>9.9932e−01</td>
<td>0.958</td>
<td>8.7e−04</td>
</tr>
<tr>
<td>7</td>
<td>2.8179e−02 ± 5.0e−03</td>
<td>2.7959e−02 ± 4.9e−03</td>
<td>9.992e−01</td>
<td>0.984</td>
<td>2.3e−04</td>
</tr>
<tr>
<td>8</td>
<td>2.3342e−02 ± 5.0e−03</td>
<td>2.3943e−02 ± 5.1e−03</td>
<td>9.995e−01</td>
<td>1.022</td>
<td>9.2e−05</td>
</tr>
<tr>
<td>9</td>
<td>2.3579e−02 ± 5.1e−03</td>
<td>2.4315e−02 ± 5.3e−03</td>
<td>9.997e−01</td>
<td>1.040</td>
<td>−2.1e−04</td>
</tr>
<tr>
<td>10</td>
<td>2.7038e−02 ± 4.7e−03</td>
<td>2.7303e−02 ± 4.8e−03</td>
<td>9.995e−01</td>
<td>1.016</td>
<td>−1.7e−04</td>
</tr>
<tr>
<td>11</td>
<td>2.7517e−02 ± 7.8e−03</td>
<td>2.8196e−02 ± 7.8e−03</td>
<td>9.991e−01</td>
<td>1.015</td>
<td>2.8e−04</td>
</tr>
<tr>
<td>12</td>
<td>2.3044e−02 ± 4.2e−03</td>
<td>2.4276e−02 ± 4.6e−03</td>
<td>9.983e−01</td>
<td>1.091</td>
<td>−8.7e−04</td>
</tr>
<tr>
<td>13</td>
<td>3.4345e−02 ± 6.4e−03</td>
<td>3.4670e−02 ± 6.4e−03</td>
<td>9.9984e−01</td>
<td>1.003</td>
<td>2.3e−04</td>
</tr>
<tr>
<td>14</td>
<td>2.5904e−02 ± 1.1e−02</td>
<td>2.6149e−02 ± 1.0e−02</td>
<td>9.991e−01</td>
<td>0.981</td>
<td>7.3e−04</td>
</tr>
<tr>
<td>15</td>
<td>3.5393e−02 ± 6.7e−03</td>
<td>3.5421e−02 ± 6.7e−03</td>
<td>9.9985e−01</td>
<td>1.013</td>
<td>−4.3e−04</td>
</tr>
<tr>
<td>16</td>
<td>2.3601e−02 ± 5.3e−03</td>
<td>2.4239e−02 ± 5.7e−03</td>
<td>9.9760e−01</td>
<td>1.079</td>
<td>−1.2e−03</td>
</tr>
<tr>
<td>17</td>
<td>2.7052e−02 ± 4.9e−03</td>
<td>2.7051e−02 ± 4.9e−03</td>
<td>9.9983e−01</td>
<td>1.013</td>
<td>−3.5e−04</td>
</tr>
<tr>
<td>18</td>
<td>2.5460e−02 ± 4.6e−03</td>
<td>2.5182e−02 ± 4.8e−03</td>
<td>9.9843e−01</td>
<td>1.025</td>
<td>−9.2e−04</td>
</tr>
</tbody>
</table>
Regression for K Over All Subjects

Linear regression for K calculated with blood samples u_{bs} and estimated input function u_e using the Patlak method. Correlation 0.9969, slope .9878 and intercept 7.1×10^{-4}.
Parameters for one subject. The correlation coefficients are 0.9814, 0.9954, 0.9992 and 0.9890
Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Observations: Very Simple Problem requiring basic mathematics

Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Observations: Very Simple Problem requiring basic mathematics

Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Observations: Very Simple Problem requiring basic mathematics

Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Observations: Very Simple Problem requiring basic mathematics

Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Observations: Very Simple Problem requiring basic mathematics

Mathematical Techniques used

1. Solution of simple ODEs.
2. Nonlinear fit - two options, one a simple nonlinear fit.
3. Optimization.
5. Image analysis
Recall blurring of standard PET images:
More About PET images

Recall blurring of standard PET images:
Recall blurring of standard PET images:

- Assume spatially invariant blur: \(g = f * h + n \) given \(g \) and \(h \) with unknown \(n \).
- \(g \) is the recorded image, \(f \) the unknown real image, \(h \) the point spread function (PSF) and \(n \) unknown noise.
More About PET images

Recall blurring of standard PET images:

- Assume spatially invariant blur: \(g = f * h + n \) given \(g \) and \(h \) with unknown \(n \).

- \(g \) is the recorded image, \(f \) the unknown real image, \(h \) the point spread function (PSF) and \(n \) unknown noise.
Recall blurring of standard PET images:

- Assume spatially invariant blur: \(g = f \ast h + n \)
given \(g \) and \(h \) with unknown \(n \).

- \(g \) is the recorded image, \(f \) the unknown real image, \(h \) the point spread function (PSF) and \(n \) unknown noise.
Inverse Problem

- **Goal** Given g find f
- *Problem is ill-posed.* We cannot invert to find f.
- Regularization is needed.

\[
\hat{f} = \arg \min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \}
\]

- $R(f)$ is a regularization term which picks a best image according to desired properties.
- **Difficulty** images cannot be improved prior to kinetic estimation, because values change.
- **Benefit** May show anatomical change without quantification. Important to identify edges.
Inverse Problem

- **Goal** Given \(g \) find \(f \)
- *Problem is ill-posed.* We cannot invert to find \(f \).
- Regularization is needed.

\[
\hat{f} = \arg \min_{f} \{ \| g - f * h \|_2^2 + \lambda R(f) \}
\]

- \(R(f) \) is a regularization term which picks a best image according to desired properties.
- **Difficulty** images cannot be improved prior to kinetic estimation, because values change.
- **Benefit** May show anatomical change without quantification. Important to identify edges.
Goal Given g find f

Problem is ill-posed. We cannot invert to find f.

Regularization is needed.

$$
\hat{f} = \arg\min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \}
$$

- $R(f)$ is a regularization term which picks a best image according to desired properties.
- **Difficulty** images cannot be improved prior to kinetic estimation, because values change.
- **Benefit** May show anatomical change without quantification.
 Important to identify edges.
Goal Given g find f

Problem is ill-posed. We cannot invert to find f.

Regularization is needed.

$$\hat{f} = \arg \min_{f} \{ \|g - f \ast h\|_2^2 + \lambda R(f) \}$$

$R(f)$ is a regularization term which picks a best image according to desired properties.

Difficulty images cannot be improved prior to kinetic estimation, because values change.

Benefit May show anatomical change without quantification. Important to identify edges.
Goal Given g find f

Problem is ill-posed. We cannot invert to find f.

Regularization is needed.

$$\hat{f} = \arg\min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \}$$

$R(f)$ is a regularization term which picks a best image according to desired properties.

Difficulty images cannot be improved prior to kinetic estimation, because values change.

Benefit May show anatomical change without quantification. Important to identify edges.
Inverse Problem

- **Goal** Given g find f

 Problem is ill-posed. We cannot invert to find f.

 Regularization is needed.

 $$\hat{f} = \arg \min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \}$$

- $R(f)$ is a regularization term which picks a best image according to desired properties.

- **Difficulty** images cannot be improved prior to kinetic estimation, because values change.

- **Benefit** May show anatomical change without quantification. Important to identify edges.
Regularization Methods (short overview)

- Common methods are Tikhonov (TK).

\[R(f) = TK(f) = \int_{\Omega} |\nabla f(x)|^2 \, dx. \]

- Total Variation (TV)

\[R(f) = TV(f) = \int_{\Omega} |\nabla f(x)| \, dx. \]

- Sparse deconvolution (L^1) (not relevant for PET images)

\[R(f) = \|f\|_1 = \int_{\Omega} |f(x)| \, dx. \]
Regularization Methods (short overview)

- Common methods are Tikhonov (TK).
 \[R(f) = TK(f) = \int_{\Omega} |\nabla f(x)|^2 dx. \]

- Total Variation (TV)
 \[R(f) = TV(f) = \int_{\Omega} |\nabla f(x)| dx. \]

- Sparse deconvolution (\(L^1\)) (not relevant for PET images)
 \[R(f) = \|f\|_1 = \int_{\Omega} |f(x)| dx. \]
Regularization Methods (short overview)

- Common methods are Tikhonov (TK).

\[R(f) = TK(f) = \int_{\Omega} |\nabla f(x)|^2 dx. \]

- Total Variation (TV)

\[R(f) = TV(f) = \int_{\Omega} |\nabla f(x)| dx. \]

- Sparse deconvolution (L^1) (not relevant for PET images)

\[R(f) = \| f \|_1 = \int_{\Omega} |f(x)| dx. \]
\[\hat{f} = \arg \min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \} \]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)

- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.

- **TK yields a smooth** reconstruction.

- **L1 yields spike trains**
\[
\hat{f} = \arg\min_{f} \{ \| g - f \ast h \|_2^2 + \lambda R(f) \}
\]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)
- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.
- **TK yields a smooth** reconstruction.
- **L1 yields spike trains**
\[\hat{f} = \arg \min_{f} \{ \| g - f \ast h \|_2^2 + \lambda R(f) \} \]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)

- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.

- **TK yields a smooth** reconstruction.

- **L1 yields spike trains**
\[
\hat{f} = \arg \min_f \{ \| g - f \ast h \|_2^2 + \lambda R(f) \}
\]

- \(\lambda \) **Governs the trade off** between the fit to the data and the smoothness of the reconstruction and can be picked by the L-curve approach, (see Hansen, Inverse Problems)

- **TV yields a piece wise constant** reconstruction and preserves the edges of the image.

- **TK yields a smooth** reconstruction.

- **L1 yields spike trains**
Objective function of the data fit term is **convex**

TK is a linear least squares (LS) problem

\[\hat{f} = \arg \min_f \{ \| g - Hf \|_2^2 + \lambda \| \nabla f \|_2^2 \} \]

The TV objective function is **non differentiable**

\[J(f) = \| g - Hf \|_2^2 + \lambda \| \nabla f \|_1 \]
Objective function of the data fit term is \textit{convex}.

TK is a linear least squares (LS) problem

\[\hat{f} = \arg \min_f \left\{ \|g - Hf\|_2^2 + \lambda \|\nabla f\|_2^2 \right\} \]

The TV objective function is \textit{non differentiable}

\[J(f) = \|g - Hf\|_2^2 + \lambda \|\nabla f\|_1 \]
Objective function of the data fit term is **convex**

TK is a linear least squares (LS) problem

\[
\hat{f} = \arg \min_{f} \{ \| g - Hf \|_2^2 + \lambda \| \nabla f \|_2^2 \}\]

The TV objective function is **non differentiable**

\[
J(f) = \| g - Hf \|_2^2 + \lambda \| \nabla f \|_1
\]
Differentiability of TV - $1D$ (tensor product in $2D$)

\[R(f) = \sum_{i} \| f_{i+1} - f_{i} \| \]

- For a small β define

\[R_{\beta} = \sum_{i} \sqrt{(f_{i+1} - f_{i})^2 + \beta} \]

- choose β in 10^{-5} to 10^{-9}
Differentiability of TV - 1D (tensor product in 2D)

\[R(f) = \sum_{i} \| f_{i+1} - f_i \| \]

- For a small \(\beta \) define

\[R_\beta = \sum_{i} \sqrt{(f_{i+1} - f_i)^2 + \beta} \]

- choose \(\beta \) in \(10^{-5} \) to \(10^{-9} \)
Numerical optimization scheme

- To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)
- A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
- Only a limited number of update vectors are kept, e.g. 10.
- Evaluation of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications)
- Problems are usually large and many iterations are needed.
To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal).

A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.

Only a limited number of update vectors are kept, e.g. 10.

Evaluation of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications).

Problems are usually large and many iterations are needed.
To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)

A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.

Only a limited number of update vectors are kept, e.g. 10.

Evaluation of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications)

Problems are usually large and many iterations are needed.
Numerical optimization scheme

- To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal).
- A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
- Only a limited number of update vectors are kept, e.g. 10.
- **Evaluation** of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications).
- Problems are usually large and many iterations are needed.
Numerical optimization scheme

- To find the minimum we use a limited memory BFGS (see Vogel, Computational Methods for Inverse Problems and Nocedal)
- A quasi Newton Method where the estimated Hessian in each step is updated by a rank 2 update.
- Only a limited number of update vectors are kept, e.g. 10.
- **Evaluation** of the OF and its gradient is cheap (some FFTs and sparse matrix-vector multiplications)
- Problems are usually large and many iterations are needed.
The PSF is usually unknown or only estimated.

Estimates exist for PET scanners from phantom scans.

Actually PSF is spatially variant and also depends on the scanned object.

Hence even if provided PSF is always only an estimate.

For the PET scans presented here, a $6\, \text{mm}$ half width Gaussian was assumed.
The PSF is usually unknown or only estimated

Estimates exist for PET scanners from phantom scans

Actually PSF is spatially variant and also depends on the scanned object

Hence even if provided PSF is always only an estimate

For the PET scans presented here, a 6mm half width Gaussian was assumed.
Simulated PET

- On the left simulated PET from blurred segmented MRI scan using **Gaussian PSF** and noise added.
- On the right deblurred PET with TV and known PSF.
Simulated PET

- On the left simulated PET from blurred segmented MRI scan using **Gaussian PSF** and noise added.
- On the right deblurred PET with TV and known PSF.
Recover real PET image

- Reconstruction done using Filtered Back Projection
- PSF estimated by a Gaussian
- TV regularization
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind deconvolution)
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
- Improvement requires better approximation of the PSF
- Total Least Squares
- Increased Artifacts and noise. (More post processing can improve this)
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind deconvolution)
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
- Improvement requires better approximation of the PSF
- Total Least Squares
- Increased Artifacts and noise. (More post processing can improve this)
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind deconvolution)
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
- Improvement requires better approximation of the PSF
- Total Least Squares
- Increased Artifacts and noise. (More post processing can improve this)
Observations

- Image improvement is possible even with a rough estimation of the PSF (non-blind deconvolution)
- Total Variation regularization (piecewise constant solution) is appropriate: intensity levels depend on the tissue type.
- Improvement requires better approximation of the PSF
- Total Least Squares
- Increased Artifacts and noise. (More post processing can improve this)
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]

- \(H \) is a Toeplitz matrix of Point Spread Function
- TLS assumes error in \(H \) and \(g \) i.e.
 \[g = (H + E)f + n \]

- Total least squares solution \(f_{TLS} \) solves
 \[\min ||E|n||_F^2 \quad \text{subject to} \quad g = (H + E)f + n \]

- \(f_{TLS} \) can be found from SVD of \([H, g]\) (Golub et al)
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]
- \(H \) is a Toeplitz matrix of Point Spread Function
- TLS assumes error in \(H \) and \(g \) i.e.
 \[g = (H + E)f + n \]
- Total least squares solution \(f_{TLS} \) solves
 \[\min \| E|n\|_F^2 \quad \text{subject to} \quad g = (H + E)f + n \]
- \(f_{TLS} \) can be found from SVD of \([H, g]\) (Golub et al)
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]

- \(H \) is a Toeplitz matrix of Point Spread Function
- TLS assumes error in \(H \) and \(g \) i.e.
 \[g = (H + E)f + n \]

- Total least squares solution \(f_{TLS} \) solves
 \[\min \| E|n\|_F^2 \quad \text{subject to} \quad g = (H + E)f + n \]

- \(f_{TLS} \) can be found from SVD of \([H, g]\) (Golub et al)
Total least squares (TLS)

- Rewrite convolution as matrix vector product:
 \[g = Hf + n \]
- \(H \) is a Toeplitz matrix of Point Spread Function
- TLS assumes error in \(H \) and \(g \) i.e.
 \[g = (H + E)f + n \]
- Total least squares solution \(f_{TLS} \) solves
 \[\min ||E|n||_F^2 \quad \text{subject to} \quad g = (H + E)f + n \]
- \(f_{TLS} \) can be found from SVD of \([H, g]\) (Golub et al)
The TLS solution minimizes Rayleigh Quotient:

\[
\min_f \frac{\| Hf - g \|^2_2}{1 + \| f \|^2_2}
\]

Include regularization:

\[
\min_f \frac{\| Hf - g \|^2_2}{1 + \| f \|^2_2} + \lambda R(f)
\]

The TLS solution minimizes Rayleigh Quotient:

$$\min_f \frac{\|Hf - g\|_2^2}{1 + \|f\|_2^2}$$

Include regularization:

$$\min_f \frac{\|Hf - g\|_2^2}{1 + \|f\|_2^2} + \lambda R(f)$$

The TLS solution minimizes Rayleigh Quotient:

\[
\min_f \frac{\|Hf - g\|^2}{1 + \|f\|^2} + \lambda R(f)
\]

Include regularization:

\[
\min_f \frac{\|Hf - g\|^2}{1 + \|f\|^2} + \lambda R(f)
\]
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[\min ||E|n||_F^2 \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma} \]

- Minimum is obtained as the minimum singular value of \([H, \gamma g]\)
- For flexibility use Rayleigh quotient formulation

\[\min_f \frac{||Hf - g||_2^2}{1 + \gamma^2 ||f||_2^2} \]

- \(\gamma = 0\) is the LS problem
- \(\gamma = 1\) is the standard TLS problem
- \(\gamma\) accounts for different noise levels in \(H\) and \(g\).
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[\min ||E|n||_F^2 \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma} \]

- Minimum is obtained as the minimum singular value of \([H, \gamma g]\)

- For flexibility use Rayleigh quotient formulation

\[\min_f \frac{||Hf - g||_2^2}{1 + \gamma^2 ||f||_2^2} \]

- \(\gamma = 0\) is the LS problem
- \(\gamma = 1\) is the standard TLS problem
- \(\gamma\) accounts for different noise levels in \(H\) and \(g\).
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[
\min \|E|n\|^2_F \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma}
\]

- Minimum is obtained as the minimum singular value of \([H, \gamma g]\)

- For flexibility use Rayleigh quotient formulation

\[
\min_f \frac{\|Hf - g\|^2}{1 + \gamma^2 \|f\|^2}
\]

- \(\gamma = 0\) is the LS problem

- \(\gamma = 1\) is the standard TLS problem

- \(\gamma\) accounts for different noise levels in \(H\) and \(g\).
Scaled TLS: different noise levels

- Theory (Paige and Strakos, Numerische Mathematik)

\[
\min \| E | n \|_F^2 \quad \text{subject to} \quad g = (H + E)f + \frac{n}{\gamma}
\]

- Minimum is obtained as the minimum singular value of $[H, \gamma g]$
- For flexibility use Rayleigh quotient formulation

\[
\min_f \frac{\| Hf - g \|_2^2}{1 + \gamma^2 \| f \|_2^2}
\]

- $\gamma = 0$ is the LS problem
- $\gamma = 1$ is the standard TLS problem
- γ accounts for different noise levels in H and g.
Regularize scaled RQ:

$$\min_f \frac{\|Hf - g\|^2_2}{1 + \gamma^2\|f\|^2_2} + \lambda R(f)$$

- Permits careful investigation of effect of noise levels in H and g.
- Which is greater, the error in the PSF or the error in the measured data?
Regularize scaled RQ:

\[\min_f \frac{\|Hf - g\|^2_2}{1 + \gamma^2 \|f\|^2_2} + \lambda R(f) \]

- Permits careful investigation of effect of noise levels in \(H \) and \(g \).
- Which is greater, the error in the PSF or the error in the measured data?
Regularize scaled RQ:

$$\min_f \frac{\|Hf - g\|^2}{1 + \gamma^2 \|f\|^2} + \lambda R(f)$$

Permits careful investigation of effect of noise levels in H and g.

Which is greater, the error in the PSF or the error in the measured data?
Test Problem Noisy Shepp Logan Phantom

Shepp Logan Phantom
Blur with Gaussian $h(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{|x|^2}{2\sigma^2}}$ with $\sigma = 1.5$ (6mm half width)

Take forward Radon transform with 45 angles

Add Poisson Noise to sinogram

Transform back, with filtered back projection
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

$$\gamma^2 = 0 \quad \gamma^2 = 7.3 \times 10^{-9} \quad \gamma^2 = 3.7 \times 10^{-7}$$

- Scaling shows how to improve impact of badly chosen PSF.
- Scaling $\|Hf\| = \|g\| = 1$ (Notice for given image $\|g\|^2 \approx 10^9$)
- For scaled problem γ^2 is 1, 50, resp.
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

$\gamma^2 = 0$ $\gamma^2 = 7.3e-9$ $\gamma^2 = 3.7e-7$

- Scaling shows how to improve impact of badly chosen PSF.

- Scaling $\|Hf\| = \|g\| = 1$ (Notice for given image $\|g\|^2 \approx 10^9$)

- For scaled problem γ^2 is 1, 50, resp.
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

\begin{align*}
\gamma^2 &= 0 \\
\gamma^2 &= 7.3 \times 10^{-9} \\
\gamma^2 &= 3.7 \times 10^{-7}
\end{align*}

- Scaling shows how to improve impact of badly chosen PSF.
- Scaling $\|Hf\| = \|g\| = 1$ (Notice for given image $\|g\|^2 \approx 10^9$)
- For scaled problem γ^2 is 1, 50, resp.
Deconvolving the Shepp-Logan Phantom

- Gauss PSF with $\sigma = 2$ and TV regularization

\[\gamma^2 = 0 \] \[\gamma^2 = 7.3 \times 10^{-9} \] \[\gamma^2 = 3.7 \times 10^{-7} \]

- Scaling shows how to improve impact of badly chosen PSF.
- Scaling $\|Hf\| = \|g\| = 1$ (Notice for given image $\|g\|^2 \approx 10^9$)
- For scaled problem γ^2 is 1, 50, resp.
Real PET data
Use a PSF with 6mm half width Gaussian and then restore

\[\gamma = 0 \text{ Least Squares} \]
Use a PSF with $6\,mm$ half width Gaussian and then restore

$$\gamma = 3.7e^{-7}$$ Total Least Squares
Use a PSF with 6mm half width Gaussian and then restore

\[\gamma = 1.5 \times 10^{-5} \]
Use a PSF with 6mm half width Gaussian and then restore

\[\gamma = 1 \times 10^{-4} \]
Observations

- RTLS with TV handles inexact PSFs better then simple RLS
- Scaled RTVTLS with parameter γ in
 \[
 \min_f \frac{\|Hf - g\|_2^2}{1 + \gamma^2 \|f\|_2^2} + \lambda R(f)
 \]
 allows further tuning in case of an unknown PSF
- Iterations are expensive.
Observations

- RTLS with TV handles inexact PSFs better than simple RLS
- Scaled RTVTLs with parameter γ in
 \[
 \min_f \frac{\|Hf - g\|^2_2}{1 + \gamma^2 \|f\|^2_2} + \lambda R(f)
 \]
 allows further tuning in case of an unknown PSF
- Iterations are expensive.
Observations

- RTLS with TV handles inexact PSFs better than simple RLS
- Scaled RTVTLS with parameter γ in

$$\min_f \frac{\|Hf - g\|^2_2}{1 + \gamma^2 \|f\|^2_2} + \lambda R(f)$$

allows further tuning in case of an unknown PSF
- Iterations are expensive.
Conclusions and Future Work

- Further investigation of RTVTLS and relation to RTVLS (also with scaling)
- Improve efficiency of algorithms (methods of Guo and Renaut)
- Further interaction with medical consultants for impact and direction of the work.
- What can be achieved with wavelets? This yields other interesting work!
Conclusions and Future Work

- Further investigation of RTVTLS and relation to RTVLS (also with scaling)
- Improve efficiency of algorithms (methods of Guo and Renaut)
- Further interaction with medical consultants for impact and direction of the work.
- What can be achieved with wavelets? This yields other interesting work!
Conclusions and Future Work

- Further investigation of RTVTLS and relation to RTVLS (also with scaling)
- Improve efficiency of algorithms (methods of Guo and Renaut)
- Further interaction with medical consultants for impact and direction of the work.
- What can be achieved with wavelets? This yields other interesting work!
Further investigation of RTVTLS and relation to RTVLS (also with scaling)

Improve efficiency of algorithms (methods of Guo and Renaut)

Further interaction with medical consultants for impact and direction of the work.

What can be achieved with wavelets? This yields other interesting work!
Acknowledgments

- Hongbin Guo (Total Least Squares)
- Haewon Nam and Kewei Chen for the data and discussions on PET imaging
- Supported by: Arizona Alzheimer’s Research Center and NIH NIBIB
THANK YOU!