BIOFUEL CELL POLARIZATION ESTIMATION: INVERSION OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC MEASUREMENTS

Rosemary Renaut, Mathematics, ASU
Jakob Hansen, Jarom Hogue and Grant Sander, Math Undergraduates ASU
Sudeep Popat Biodesign Institute ASU

FEBRUARY 17, 2014
Application: Electrochemical Spectroscopy for Biofuels

Mathematical Model

Nonlinear Fitting

Linear Fitting
 Numerical Quadrature
 Integration by t
 Integration by s
 Right Preconditioner
 Regularization
 Parameter Choice
 Simulations

Nonnegative Least Squares
 Simulations

Conclusions
Physical Experiment: Microbial Electrolysis Cell for anaerobic bacteria

(a) Fuel cell

(b) Geobacter

(c) Microbial electrolysis cell

Figure: Geobacter, fuel cells, and waste water: Single-chamber microbial electrolysis cell consisting of a carbon fiber anode with a stainless steel current collector and a stainless steel cathode is used to convert food wastes into hydrogen in a single step.
ARB in fuel cell should be electrically self-sufficient

(a) Cyclic Voltammograms (CVs)

(b) Potential Loss inside ARB cell

Figure: (a) CVs of an ARB biofilm during its growth phase (7.8-11.8 d). Nernst-Monod relationship compared against the CVs (dotted lines). (b) CV explaining the potential profile for an ARB biofilm. The Nernst-Monod relationship (red dotted line) shows that most potential losses occur inside the ARB’s cell.
Figure: Schematic of the microbial electrochemical cells used for Electrochemical Impedance Spectroscopy (EIS)
Nyquist Plot of EIS impedance measurements

Figure: Nyquist plot and fitting by equivalent circuit model (ECM) for an ARB biofilm tested at -0.35 vs Ag/AgCl.
Goals

Given EIS measurements can we find

1. The underlying resistance
2. The equivalent circuit model
3. Number of resistances / processes
4. Chemical environment that minimizes ARB potential loss
Mathematical Model

Fredholm Integral Equation

- Small input current and measured output voltage leads to impedance measurements $Z(\omega)$ for angular frequency ω

$$Z(\omega) = R_0 + R_{pol} \int_0^\infty \frac{g(t)}{1 + i \omega t} \, dt,$$

(1)

- Kernel $h(\omega, t) = \frac{1}{1 + i \omega t}$ - is not square integrable.
- R_0 and R_{pol} are unknown parameters.
- Distribution function of relaxation times (DRT) $g(t)$

$$\int_0^\infty g(t) \, dt = 1 \text{ and } g(t) > 0 \text{ is unknown}$$
The DRT $g(t)$

Simple Resistance - Capacitance Circuit

Cole-Cole or ZARC element. (literature dependent)

$$g_{RQ}(t) = \frac{1}{2\pi t} \frac{\sin \beta \pi}{\cosh \left(\beta \ln \left(\frac{t}{t_0} \right) \right) + \cos \beta \pi},$$ \hspace{1cm} (2)

The impedance is analytically given

$$Z_{RQ}(\omega) = \frac{1}{1 + (i\omega t_0)^\beta},$$ \hspace{1cm} (3)

$0 < \beta < 1$ and distribution of time constants t_0.

Constant Phase element Q and resistance R.

![Diagram of simple resistance-capacitance circuit](image)
The DRT $g(t)$

Simple network of resistance - capacitance circuits

May also be realized by a lognormal distribution for the DRT

$$g_{LN}(t) = \frac{1}{t\sigma\sqrt{2\pi}} \exp \left(-\frac{(\ln(t) - \mu)^2}{2\sigma^2} \right).$$ (4)

No analytic form for the impedance is given.

Figure: Three lognormals and a weighted linear combination
Comparison of LN and RQ for one process chosen to align

(a) DRTs: t–space

(b) DRTs: s–space

(c) Nyquist plot

(d) Components Z_1

(e) Components Z_2

Figure: Simulated exact data measured at 65 logarithmically spaced points in ω. In each case the solid line indicates the RQ functions and the \diamond symbols the LN functions. $s = \log(t)$.
Nonlinear Fitting

If analytic $Z(\omega)$ is known fitting to Z is possible
No analytic form for Z nonlinear fitting integrates the DRT
What error is incurred by a **wrong** choice of model?
The residuals are small

Figure: Residual norms fitting one process to the impedance spectrum of a DRT consisting of one process with white noise.
The impact

(a) RQ by LN

(b) LN by RQ

(c) RQ by LN:

(d) LN by RQ:

Figure: Fitting functions with the consistent mean values obtained over 50 noisy selections.

- True RQ $\beta = 0.72$, $t_0 = 0.1$, true LN $\sigma = 0.83$, $t_0 = 0.1$.
- RQ to LN gives $\beta = 0.86$ and $t_0 = 0.2$
- LN to RQ gives $\sigma = 1$ and $t_0 = 0.03$
- Location and height of peak is incorrect

Small residual does not imply good fitting
Linear Formulation: Integration in t

\[
Z(\omega) = Z_1(\omega) + iZ_2(\omega)
= \left(R^0 + R^{\text{pol}} \int_0^\infty \frac{g(t)}{1 + \omega^2 t^2} \, dt \right) - iR^{\text{pol}} \left(\int_0^\infty \frac{\omega t g(t)}{1 + \omega^2 t^2} \, dt \right),
= \left(R^0 + R^{\text{pol}} \int_0^\infty h_1(\omega, t) g(t) \, dt \right) - iR^{\text{pol}} \left(\int_0^\infty h_2(\omega, t) g(t) \, dt \right).
\]

Given N quadrature points and $[T_{\text{min}}, T_{\text{max}}]$,

\[
\int_{T_{\text{min}}}^{T_{\text{max}}} g(t) h_k(\omega, t) \, dt \approx \sum_{n=1}^{N} a_n g(t_n) h_k(\omega, t) \tag{5}
\]

Matrices $(A_k)_{mn} = a_n h_k(\omega_m, t_n) \quad 1 \leq m \leq M, \ 1 \leq n \leq N$.

Measurements $(b_1)_m \approx Z_1(\omega_m) - R^0$ and $(b_2)_m \approx -Z_2(\omega_m)$

$(x)_n \approx g(t_n)$ satisfies the discrete linear systems

\[
A_k x \approx b_k, \quad k = 1, \ldots, 3, \quad A_3 = [A_1; A_2]
\]

Defining finer resolution also yields square $A_4 = [A_1^e, A_2^e]$
Systems are ill-conditioned whether Simpson’s or trapezium quadrature rules. Values for \(\omega = 2\pi f \) are based on logarithmic spacing on the interval \((f_{\text{min}}, f_{\text{max}}) = (10^{-1.7}, 10^5)\), consistent with the measured data.

Figure: The condition of matrices \(A_k, k = 1 \ldots 4 \) (\(\text{cond}(A_k) \)) plotted against the pairs \((l, j)\) indicating \([T_{\min}(l), T_{\max}(j)]\) with \(T_{\min} = [5e-2, 1e-2, 3e-3] \) and \(T_{\max} = [8e3, 4e4, 2e5] \) for both Simpson’s and trapezium quadrature rules. Values for \(\omega = 2\pi f \) are based on logarithmic spacing on the interval \((f_{\text{min}}, f_{\text{max}}) = (10^{-1.7}, 10^5)\), consistent with the measured data.
Model Error for the LN $g(t)$: integrating in t

Truncation error occurs due to semi-infinite integral: E^trunc_k

Quadrature error occurs due to limited sampling E^quad_k

Exact measurements $\hat{b}_k(\omega, t_0, \sigma)$ are contaminated

$$\hat{b}_k(\omega, t_0, \sigma) = \int_0^\infty g(t, t_0, \sigma) h_i(t, \omega) dt + E^\text{trunc}_k(\omega, T_{\text{min}}, T_{\text{max}}, t_0, \sigma)$$

$$+ E^\text{quad}_k(\omega, T_{\text{min}}, T_{\text{max}}, t_0, \sigma, N),$$

Figure: Larger error for h_1 than for h_2. Clearly depends on $g(t)$.
Transformation \(s = \ln(t) \)

Let \(s = \ln(t) \)

\[
Z(\omega) = \int_{0}^{\infty} h(\omega, t) g(t) \, dt = \int_{-\infty}^{\infty} h(\omega, e^{s}) f(s) \, ds, \quad f(s) := t g(t).
\]

(7)

For the DRTs (2)-(4) we obtain the functions

\[
f_{\text{RQ}}(s) = \frac{1}{2\pi} \frac{\sin(\beta \pi)}{\cosh(\beta (s - \ln(t_0))) + \cos(\beta \pi)} \]

(8)

\[
f_{\text{LN}}(s) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(s - \mu)^2}{2\sigma^2} \right), \quad \ln(t_0) = \mu - \sigma^2,
\]

(9)

Quadrature uses constant step in \(s \)

\[
\int_{-\infty}^{\infty} h(\omega, e^{s}) f(s) \, ds \approx \int_{s_{\text{min}}}^{s_{\text{max}}} h(\omega, e^{s}) f(s) \, ds \approx \Delta s \sum_{n=1}^{N} h(\omega, e^{s_{n}}) f(s_{n}).
\]

(10)
Figure: Quadrature error for a single RQ (left) LN(right) process with $N = 65$ for quadrature in s and t as a function of ω, plotted on a log-log scale.
\[
\int_{-\infty}^{\infty} h_k(\omega, e^s) f(s) \, ds \approx \Delta s \sum_{n=1}^{N} h_k(\omega, e^{s_n}) f(s_n) + f(s_N) r_{k,N}(\omega, e^{s_N}) + f(s_1) r_{k,1}(\omega, e^{s_1}).
\] (11)

\[
r_{k,N}(\omega, e^{s_N}) := \begin{cases}
\frac{1}{2} \ln(1 + (\omega e^{s_N})^{-2}) & k = 1 \\
\frac{\pi}{2} - \tan^{-1}(\omega e^{s_N}) & k = 2,
\end{cases}
\]

\[
r_{k,1}(\omega, e^{s_1}) := \begin{cases}
\frac{1}{2} \Delta s h_1(\omega, e^{s_1}) & k = 1 \\
\tan^{-1}(\omega e^{s_1}). & k = 2.
\end{cases}
\]

yields with \(H_k(s) = h_k(\omega, s) f(s) \) and \(\int_{-\infty}^{s_1 - \Delta s} f(s) \, ds \leq \delta(f) \)

\[
E_k(\omega) \leq \begin{cases}
\frac{\epsilon}{2} (\Delta s + \ln(2)) + \delta(f) + \frac{(s_N-s_1)^3}{12N^3} (N + 1) |H_1''(\zeta)| & k = 1 \\
\epsilon \pi + \frac{(s_N-s_1)^3}{12N^2} |H_2''(\zeta)|, & k = 2.
\end{cases}
\]
Impact on Conditioning

<table>
<thead>
<tr>
<th>Quad</th>
<th>Equation</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>(5)</td>
<td>1.5e + 13</td>
<td>1.4e + 13</td>
<td>7.5e + 12</td>
<td>4.1e + 20</td>
</tr>
<tr>
<td>s</td>
<td>(10)</td>
<td>2.9e + 09</td>
<td>7.4e + 07</td>
<td>4.6e + 08</td>
<td>2.3e + 18</td>
</tr>
<tr>
<td>s</td>
<td>(11)</td>
<td>2.8e + 09</td>
<td>7.4e + 07</td>
<td>4.6e + 08</td>
<td>9.0e + 18</td>
</tr>
</tbody>
</table>

Table: Comparing condition number of matrices with different quadratures for the optimal selection of the nodes for t_n, using $t = 1/\omega$.

Transformation acts as a **right** preconditioner on the system. Use matrix A_3 if sufficient data for resolution of the solution.
Right preconditioning separates frequencies of the basis

(a) A_1: U above and V below.
(b) A_1^s: U above and V below.

Figure: Normalized Cumulative Periodograms and Kolmogorov-Smirnov 95% confidence bounds for white noise for the matrices A_1 and A_1^s. The NCPs for A_2 and A_2^s show a similar separation of the frequency content of the respective basis vectors.
Why is the spectral decomposition important?

Consider mapping A which takes solution x to data b. $Ax = b$.

Definition (Well - Posed (Hadamard in 1923))

Inverse problem of finding x from b is called well-posed if all

- **Existence** a solution exists for any data b in data space,
- **Uniqueness** the solution x is unique
- **Stability** continuous dependence of x on b: the inverse mapping $b \rightarrow x$ is continuous.

Definition (Ill-Posed: according to Hadamard)

A problem is ill-posed if it does not satisfy all three conditions for well-posedness. Alternatively

1. $b \not\in \text{range}(A)$
2. inverse is not unique because more than one image is mapped to the same data,
3. an arbitrarily small change in b can cause an arbitrarily large change in x.
Systems are Ill-conditioned - the discrete problem is ill-posed

Figure: An example solution for real data provide no useful information - the solution is sensitive to noise in the data and the floating point arithmetic calculations
Regularization

The improved matrices are still ill-conditioned and regularization is required.

\[x = \arg \min \{ \|Ax - b\|^2 + \lambda^2 \|Lx\|^2 \} \] (12)

Tikhonov regularization controls the smoothness of the solution.

\(\lambda \) is a regularization parameter, many techniques exist to find \(\lambda \) - some require statistical properties of the data measurements.

\(L \) controls the smoothness - standard choices \(I \) or \(D_1 \) or \(D_2 \) - derivative operators.

Given \(\lambda \) an explicit solution is given with respect to the basis vectors, and solves the normal equations

\[(A^T A + \lambda^2 L^T L)x = A^T b\]
Example Solutions and Residuals - range of λ: regularizers I, L_1 and L_2
For a given residual norm there does not exist a solution with smaller semi-norm than the one provided by the L-Curve, in that sense the solution is optimal.
Residual Periodogram - uses power series to detect noise

Suppose for a given vector y that it is a time series indexed by position, i.e. index i.

Diagnostic 1 Does the histogram of entries of y generate histogram consistent with $y \sim \mathbb{N}(0, 1)$? (i.e. independent normally distributed with mean 0 and variance 1) Not practical to automatically look at a histogram and make an assessment

Diagnostic 2 Test the expectation that y_i are selected from a white noise time series. Take the Fourier transform of y and form cumulative periodogram z from power spectrum c

$$c_j = |(\text{dft}(y)_j|^2, \quad z_j = \frac{\sum_{i=1}^{j} c_j}{\sum_{i=1}^{q} c_i}, \quad j = 1, \ldots, q,$$

Automatic: Test is the line $(z_j, j/q)$ close to a straight line with slope 1 and length $\sqrt{5}/2$?
Measure Deviation from Straight Line: Residual Vector : optimal black

Figure: **Low noise**: Testing for white noise: Calculate the cumulative periodogram and measure the deviation from the “white noise” line for several λ. The vector with highest white noise content indicates transfer of noise to the residual.
Figure: High noise: Testing for white noise: Calculate the cumulative periodogram and measure the deviation from the “white noise” line for several λ. The vector with highest white noise content indicates transfer of noise to the residual.
Simulations: Generate Data to test approach: RQ solid line, LN ◊.
Solutions by LLS: Minimum error red, LC · blue and NCP – green

Figure: Mean error and example LLS solutions. .1% noise, RQ-A data set, matrix A_4.
Solutions by LLS: Minimum error red, LC · blue and NCP – green

Figure: Mean error and example LLS solutions. .1\% noise, LN-A data set, matrix A_4.
Figure: Mean error and example LLS solutions. 0.1% noise, RQ-B data set, matrix A_4.

(a) $L = I$
(b) $L = L_1$
(c) $L = L_2$
(d) $L = I$
(e) $L = L_1$
(f) $L = L_2$
Figure: Mean error and example LLS solutions. 1% noise, LN-B data set, matrix A_4.
Observations

1. Nonnegativity of $g(t)$ not maintained.
2. Boundary effects are observed
3. Important to impose additional constraints.
The DRT satisfies $g(t) > 0$. The transformed DRT, $f(s) = tg(t) > 0$ also. Hence nonnegative least squares:

$$x = \arg\min \{ \|Ax - b\|^2 + \lambda^2 \|Lx\|^2, \text{ s.t. } x \geq 0\}$$ \hspace{1cm} (13)$$

$$= \arg\min \left\{ \left\| \begin{pmatrix} A & b \end{pmatrix} \right\|_2^2, \text{ s.t. } x \geq 0 \right\}$$ \hspace{1cm} (14)$$

Depends on regularization parameter λ

Can be solved using a standard solver - Matlab \texttt{lsqnonneg}

Impose bounds on solution $x > 0$.

Parameter choice - solve for multiple λ and pick solution as for the LS problem.
Measure Deviation from Straight Line: Residual Vector: optimal black

Figure: Low noise: Testing for white noise: Calculate the cumulative periodogram and measure the deviation from the “white noise” line for several λ. The vector with highest white noise content indicates transfer of noise to the residual.
Measure Deviation from Straight Line: Residual Vector : optimal black

Figure : High noise: Testing for white noise: Calculate the cumulative periodogram and measure the deviation from the “white noise” line for several λ. The vector with highest white noise content indicates transfer of noise to the residual.
Solutions by NNLS: Minimum error red, LC · blue and NCP – green

Figure: Mean error and example NNLS solutions. .1% noise, RQ-A data set, matrix A_4.
Figure: Mean error and example NNLS solutions. 0.1% noise, RQ-B data set, matrix A_4.

Solutions by NNLS: Minimum error red, LC blue and NCP green.
Solutions by NNLS: Minimum error red, LC · blue and NCP – green

Figure: Mean error and example NNLS solutions. .1% noise, LN-A data set, matrix A_4.

(a) $L = I$
(b) $L = L_1$
(c) $L = L_2$

(d) $L = I$
(e) $L = L_1$
(f) $L = L_2$
Solutions by NNLS: Minimum error red, LC \cdot blue and NCP \textcolor{green}{} – green

\begin{align*}
(a) \quad L &= I \\
(b) \quad L &= L_1 \\
(c) \quad L &= L_2 \\
(d) \quad L &= I \\
(e) \quad L &= L_1 \\
(f) \quad L &= L_2
\end{align*}

\textbf{Figure}: Mean error and example NNLS solutions. .1\% noise, LN-B data set, matrix A_4.
Observations

1. Nonnegativity of $g(t)$ is maintained.
2. Boundary effects better preserved
3. Additional constraints very helpful
4. Parameter choice extends easily to the NNLS case for small scale problem
5. Information on noise level would be helpful - allow other methods UPRE, χ^2 etc
6. For high noise all solutions are smoothed

All work with undergraduates
Conclusions

General
- Small Scale problem - standard parameter choice can be used for regularization parameter estimation in NNLS
- Residual Periodogram extends successfully
- There is still work to do for 1d problems.

EIS
- The analysis of quadrature in this case demonstrates lack of model error despite low sampling
- Transformation is equivalent to a right preconditioning
- The ability to recognize more multiple processes in presence of noise is challenging
Acknowledgements

Authors Hansen, Hogue and Sander were supported by NSF CSUMS grant DMS 0703587: “CSUMS: Undergraduate Research Experiences for Computational Math Sciences Majors at ASU”.

Renaut was supported by NSF MCTP grant DMS 1148771: “MCTP: Mathematics Mentoring Partnership Between Arizona State University and the Maricopa County Community College District”, NSF grant DMS 121655: “Novel Numerical Approximation Techniques for Non-Standard Sampling Regimes”, and AFOSR grant 025717 “Development and Analysis of Non-Classical Numerical Approximation Methods”.

Popat was supported by ONR grant N000141210344: “Characterizing electron transport resistances from anode-respiring bacteria using electrochemical techniques”.

Professor César Torres for discussions concerning the EIS modeling.