Connecting regularization across scales for hybrid solutions of ill-posed problems

Rosemary Renaut1 Anthony Helmstetter1 Saeed Vatankhah2

1: School of Mathematical and Statistical Sciences, Arizona State University, renaut@asu.edu, anthony.helmstetter@asu.edu

2: Institute of Geophysics, University of Tehran, svatan@ut.ac.ir

SIAM Houston Imaging Symposium
Motivation Example: Large Scale Gravity Inversion

Background: SVD for the small scale
- Standard Approaches to Estimate Regularization Problem
- UPRE is a good regularization parameter estimation tool

Methods for the Large Scale: Approximating the SVD
- Krylov: Golub Kahan Bidiagonalization - LSQR
- Parameter estimation on the projected problem
 - Details: UPRE is a good estimator for LSQR [RVA17]
- Randomized SVD: Convergence and Regularization

Parameter Estimation

Simulations
- One Dimension Contrasting the RSVD and LSQR: Some Trivial Experiments

Simulations: Two dimensional Examples
- Undersampled 3D gravity data: approximate L_1 regularization

Conclusions
Motivation Example: Large Scale 3D Gravity Inversion

Observation point $\mathbf{r} = (x, y, z)$

Vertical gravitational attraction $g(\mathbf{r})$

$$g(\mathbf{r}) = \Gamma \int d\Omega \varrho(\mathbf{r}') \frac{\mathbf{r}' - \mathbf{r}}{|\mathbf{r}' - \mathbf{r}|^3} d\Omega'$$

Density $\varrho(\mathbf{r}')$ at $\mathbf{r}' = (x', y', z')$

Newton gravitational constant: Γ

Aim: Given surface observations g_{ij} find volume density ϱ_{ijk}

Underdetermined, measurements 5500, unknowns 66000

Practical Approaches to Solve Large Scale are needed
Consider general discrete problem

\[Ax = b, \quad A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^m, \quad x \in \mathbb{R}^n. \]

Singular value decomposition (SVD) of \(A \) rank \(r \)

\[
A = U \Sigma V^T = \sum_{i=1}^{r} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r).
\]

gives expansion for the solution

\[
x = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i
\]

Truncation: \(k < r \)

\[
x = \sum_{i=1}^{k} \frac{u_i^T b}{\sigma_i} v_i
\]

Filtering \(\gamma_i \)

\[
x = \sum_{i=1}^{r} \gamma_i(\alpha) \frac{u_i^T b}{\sigma_i} v_i
\]

Filtered Truncated

\[
x = \sum_{i=1}^{k} \gamma_i(\alpha) \frac{u_i^T b}{\sigma_i} v_i
\]
Tikhonov Regularization: regularization parameter α

Filter Functions

$$\gamma_i(\alpha) = \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2}, \quad i = 1 \ldots r,$$

Solves Standard Form

$$x(\alpha) = \arg\min_x \{ \|b - Ax\|^2 + \alpha^2 \|x\|^2 \}$$

Generalized Tikhonov has operator L

$$x(\alpha) = \arg\min_x \{ \|b - Ax\|^2 + \alpha^2 \|Lx\|^2 \}$$

Solve with standard form if L invertible.

Requires automatic estimation of α

How to solve and how to find α^{opt} for large scale problems?
Introduce $\phi_i(\alpha) = \frac{\alpha^2}{\alpha^2 + \sigma_i^2} = 1 - \gamma_i(\alpha)$, $i = 1 : r$, $\gamma_i = 0$, $i > k$.

Unbiased Predictive Risk : Minimize functional noise level σ^2

$$U_k(\alpha) = \sum_{i=1}^{k} \phi_i^2(\alpha)(u_i^T b)^2 - 2\sigma^2 \sum_{i=1}^{k} \phi_i(\alpha)$$

GCV : Minimize rational function $m^* = \min\{m, n\}$

$$G(\alpha) = \left(\sum_{i=1}^{m^*} \phi_i^2(\alpha)(u_i^T b)^2 \right) \left(\sum_{i=1}^{m^*} \phi_i^2(\alpha) \right)^{-2}$$

How does $\alpha^{opt} = \arg\min F(\alpha)$ depend on k?
Examples: $F(\alpha)$ Increasing truncation k. Noise level $\sigma^2 = .0001$

UPRE function $U_k(\alpha)$ with increasing k: unique minimum

GCV function $G_k(\alpha)$ with increasing k: non unique minimum
Theorem on UPRE for the FTSVD regularization

Coefficients of the data: \(\hat{b}_i = u_i^T b \)

Assumption: There exists \(\ell \) such that \(E(\hat{b}_i^2) = \sigma^2 \) for all \(i > \ell \), i.e. coefficients \(\hat{b}_i \) noise contaminated \(i > \ell \).

Define

\[\alpha^{opt} = \operatorname{argmin} U(\alpha) \quad \text{and} \quad \alpha_k = \operatorname{argmin} U_k(\alpha), \]

Theorem

Suppose that \(k = \ell + p, p > 0 \), then the sequence \(\{\alpha_k\} \) is on the average increasing with \(\lim_{k \to r} \alpha_k = \alpha^{opt} \). Furthermore \(\{U_k(\alpha_k)\} \) is increasing, with \(\lim_{k \to r} U_k(\alpha_k) = U(\alpha^{opt}) \).

Observations:

1. Find \(\alpha_k \) for TSVD with \(k \) terms.
2. Determine optimal \(k \) as \(\alpha_k \) converges to \(\alpha^{opt} \).
Traditional: The LSQR iteration: Given k defines range space

LSQR Let $\beta_1 := \|b\|_2$, and $e_1^{(k+1)}$ first column of I_{k+1}
Generate, lower bidiagonal $B_k \in \mathcal{R}^{(k+1) \times k}$, column orthonormal $H_{k+1} \in \mathcal{R}^{m \times (k+1)}$, $G_k \in \mathcal{R}^{n \times k}$

$$AG_k = H_{k+1}B_k, \quad \beta_1 H_{k+1}e_1^{(k+1)} = b.$$

Projected Problem on projected space: (standard Tikhonov)

$$w_k(\zeta_k) = \arg\min_{w \in \mathcal{R}^k} \{\|B_kw - \beta_1e_1^{(k+1)}\|_2^2 + \zeta_k^2\|w\|_2^2\}.$$

Projected Solution depends on ζ_k^{opt}

$$x_k(\zeta_k^{opt}) = G_kw_k(\zeta_k^{opt}).$$

Generally: $\zeta_k^{opt} \neq \alpha^{opt}$

Regularization is on $\|w\|^2 = \|x\|^2$. Complicates generalized Tikhonov, $\|Lw\|^2 \neq \|Lx\|^2$
Regularization of the LSQR solution: Questions

(i) Determine optimal k: the size of the Krylov subspace. The choice of the subspace impacts the regularizing properties of the iteration: For large k noise due to numerical precision and data error enters the projected space.

(ii) Determine optimal ζ_k: How do regularization parameter techniques translate to the projected problem?

(iii) Relation optimal ζ_k and optimal α: Given k how well does optimal ζ_k for projected space yield optimal α for full space, or when is this the case? How does UPRE do as compared to GCV.

(iv) WGCV Note [CNO08] GCV regularization requires weighting parameter ω
Regularization of the LSQR solution by UPRE [RVA17]

\[U^{\text{full}}(\alpha) \] functional for original problem (depends on \(A, b \))

\[U^{\text{proj}}(\zeta_k) \] functional for projected problem (depends on \(B_k \) and \(\beta_1 e_1^{(k+1)} \))

Is \(\alpha^{\text{opt}} \) relevant to \(\zeta_k^{\text{opt}} \) for the projected problem?

Theorem ([RVA17]: with assumptions on the approximation of the spectral space)

1. \(\alpha^{\text{opt}} \) for \(U^{\text{full}}(\alpha) \) can be estimated for projected problem
2. Minimizer of \(U^{\text{proj}}(\zeta_k) \) is minimizer of \(U^{\text{full}}(\zeta_k) \)
3. \(\zeta_k^{\text{opt}} \) depends on \(k \), \(\alpha^{\text{opt}} \) depends on \(m^* =: \min(m, n) \)
4. If \(k^* \) approx numerical rank \(A \), and right singular space is well-approximated \(\zeta_k^{\text{opt}} \approx \alpha^{\text{opt}} \) for \(K_{k^*}(A^T A, A^T b) \)

But when is the singular space approximation good enough
Approximation of the spectral space: \(A' = H_{k+1} B_k G_k^T \neq A \)

Lemma (Relates the singular spaces of \(A' \) and \(B_k \))

Let \(B_k = \tilde{U} \tilde{\Sigma} \tilde{V}^T \), \(H_{k+1} B_k G_k^T = U' \Sigma' V'^T \). If \(\sigma_i \neq \sigma_j \ \forall i \), then

\[
(H_{k+1} \tilde{U}) \tilde{\Sigma} (\tilde{V}^T G_k^T) = H_{k+1} B_k G_k^T,
\]

and, up to sign change,

\[
(H_{k+1} \tilde{U})(:, 1 : k) = U'(:, 1 : k) \quad (G_k \tilde{V})(:, 1 : k) = V'(:, 1 : k)
\]

Define \(\gamma_k = \| A - A' \| = \| \delta A \| \) then:

Theorem ([DDLT91]: how far is \(A' \) from \(A \)? \((\sigma_i \neq \sigma_j) \))

\(u_i \) and \(u'_i \) (\(v_i \) and \(v'_i \)) are left (right) unit singular vectors of \(A \) and \(A' \). For \(\| \delta A \| \leq \gamma_k \), if \(2 \gamma_k < \min_{i \neq j} |\sigma_i - \sigma_j| \), then

\[
\max(\sin \Theta(u_i, u'_i), \sin \Theta(v_i, v'_i)) \leq \frac{\gamma_k}{\min_{i \neq j} |\sigma_i - \sigma_j| - \gamma_k} \leq 1.
\]
Convergence: depends on the gap γ_k

Theorem ([Jia16]: For fast decay of singular values)

For $\ell: \hat{b}_\ell > \sigma_\ell$. Decay rate $\sigma_i = \zeta \rho^{-i}$, $\rho > 2$. Then $A' = H_{k+1}B_kG_k^T$ is near best rank k approximation to A for $k = 1, 2, \ldots, \ell$.

Decay Rate Results depend on decay rates

Convergence of UPRE thus depends on finding k for which an optimal spectral approximation is found

Truncation With a given subspace a truncated space of size $k' < k$ provides an optimal approximation. Requires optimal determination of k'? (Not addressed in this talk)
Details: Calculating Unbiased Predictive Risk using $w_k(\alpha)$[RVA17]

Residual: $\mathbf{R}^{\text{full}}(\mathbf{x}_k) = A\mathbf{x}_k - \mathbf{b}$.

Influence Matrix $A(\alpha) = A(A^TA + \alpha^2 I)^{-1}A^T$

UPRE : Full problem

$$\alpha^{\text{opt}} = \arg\min_{\alpha} \left\{ \| \mathbf{R}^{\text{full}}(\mathbf{x}_k(\alpha)) \|_2^2 + 2 \text{Tr}(A(\alpha)) - m \right\} = \arg\min_{\alpha} \{ U^{\text{full}}(\alpha) \}$$

Using the projected solution for parameter α and

$$\text{Tr}((AG_k(\alpha))) = \text{Tr}(B_k(\alpha))$$

$$U^{\text{full}}(\alpha) = \| (AG_k(\alpha) - I_m) \mathbf{b} \|_2^2 + 2 \text{Tr}((AG_k(\alpha)) - m$$

$$= \| \beta_1(B_k(\alpha) - I_{k+1})e_1^{k+1} \|_2^2 + 2 \text{Tr}(B_k(\alpha)) - m$$

α^{opt} for $U^{\text{full}}(\alpha)$ can be estimated for projected problem
Deriving UPRE for the projected problem

Is α^{opt} **relevant to** ζ_k^{opt} **for the projected problem?**

Noise in the right hand side

For $b = b^{\text{true}} + \eta$, $\eta \sim \mathcal{N}(0, I_m)$

$$\beta_1 e_1^{k+1} = H_{k+1}^T b = H_{k+1}^T b^{\text{true}} + H_{k+1}^T \eta.$$

Noise in projected right hand side

$H_{k+1}^T \eta \sim \mathcal{N}(0, I_{k+1})$

Immediately

$$U_{\text{proj}}(\zeta_k) = \|\beta_1 (B_k(\zeta_k) - I_{k+1}) e_1^{(k+1)}\|_2^2 + 2 \text{Tr}(B_k(\zeta_k)) - (k + 1)$$

$$= U_{\text{full}}(\zeta_k) + m - (k + 1).$$

Minimizer of $U_{\text{proj}}(\zeta_k)$ **is minimizer of** $U_{\text{full}}(\zeta_k)$
ζ_k^{opt} calculated for projected problem may not yield α^{opt} on full problem.

ζ_k^{opt} depends on k, α^{opt} depends on $m^* =: \min(m, n)$.

Trace Relations By linearity and cycling.

\[
\text{Tr}(A(\alpha)) = \text{Tr}(A(A^T A + \alpha^2 I_n)^{-1} A^T) = m^* - \alpha^2 \sum_{i=1}^{m^*} (\sigma_i^2 + \alpha^2)^{-1}
\]

\[
\text{Tr}(B_k(\zeta_k)) = k - \zeta_k^2 \sum_{i=1}^{k} (\gamma_i^2 + \zeta_k^2)^{-1}.
\]

Approximate Singular Values If $\sigma_i \approx \gamma_i$, $1 \leq i \leq k^* \leq k$,

$\sigma_{k^*}^2 / (\sigma_{k^*}^2 + \alpha^2) >> \sigma_i^2 / (\sigma_i^2 + \alpha^2) \approx 0$, $i > k^*$,

\[
\text{Tr}(A(\alpha)) \approx \text{Tr}(B_{k^*}(\alpha)) + \sum_{i=k^*+1}^{m^*} \sigma_i^2 (\sigma_i^2 + \alpha^2)^{-1} \approx \text{Tr}(B_{k^*}(\alpha)).
\]

If k^* approx numerical rank A, $\zeta_k^{\text{opt}} \approx \alpha^{\text{opt}}$ for $K_{k^*}(A^T A, A^T b)$.
$A \in \mathcal{R}^{m \times n}$, target rank k, oversampling parameter p, $k + p = kp \ll m$. Power factor q. Compute $A \approx A_k = U_k \Sigma_k V_k^T$, $U_k \in \mathcal{R}^{m \times k}$, $\Sigma_k \in \mathcal{R}^{k \times k}$, $V_k \in \mathcal{R}^{n \times k}$.

1: Generate a Gaussian random matrix $\Omega \in \mathcal{R}^{n \times kp}$.
2: Compute $Y = A\Omega \in \mathcal{R}^{m \times kp}$. $Y = \text{orth}(Y)$
3: If $q > 0$ repeat q times \{ $Y = A(A^TY)$, $Y = \text{orth}(Y)$ \}. Power
4: Form $B = Y^TA \in \mathcal{R}^{kp \times n}$. ($Q = Y$)
5: Economy SVD $B = U_B \Sigma_B V_B^T$, $U_B \in \mathcal{R}^{kp \times kp}$, $V_B \in \mathcal{R}^{k \times k}$
6: $U_k = QU_B(:, 1:k)$, $V_k = V_B(:, 1:k)$, $\Sigma_k = \Sigma_B(1:k, 1:k)$
7: Then $A_k = U_k \Sigma_k V_k^T$

Provides an approximate TSVD

Convergence and regularization parameter estimation?

Comparison to LSQR?
Theory for the approximation of the TSVD by the RSVD

Theorem (Proto)
Target rank \(k \geq 2, \) **oversampling** \(p \geq 2, \) \(k + p \leq \min\{m, n\}. \)

\[
E(\|A - QQ^T A\|) \leq \left[1 + \frac{4\sqrt{k + p}}{p - 1} \cdot \sqrt{\min\{m, n\}} \right] \sigma_{k+1}
\]

Theorem (Power Iteration to force singular values to 0)
Exponent \(q, \) **target** \(k \) **singular values,** \(2 \leq k \leq 0.5 \min\{m, n\}. \)

*Then rank-2\(k \) factorization \(U\Sigma V^T : \)

\[
E(\|A - U\Sigma V^T\|) \leq \left[1 + 4 \sqrt{\frac{2 \min\{m, n\}}{k - 1}} \right]^{1/(2q+1)} \sigma_{k+1}
\]

Or truncate to get a rank \(k \) approximation so that

\[
E(\|A - U\Sigma_{(k)} V^T\|) \leq \left(1 + \left[1 + 4 \sqrt{\frac{2\min\{m, n\}}{k - 1}} \right]^{1/(2q+1)} \right) \sigma_{k+1}
\]
Approximation The RSVD gives a near best rank \(k \) approximation on the average.

UPRE Because the RSVD yields approximate TSVD - the UPRE regularization convergence should apply. (No new analysis required as for the LSQR)
Contrasting the RSVD and LSQR

RSVD RSVD with standard oversampling. \((p = k)\)

RSVDQ RSVD with power iteration and \(q = 2\). \((p = k)\)

LSQR Standard LSQR

LSQRO Oversample in the LSQR using \(p = k\) to find \(B_{p+k}\) and its SVD. Use relevant \(k\) components of the SVD as for the RSVD.

Aims
1. Compare running times
2. Compare spectral approximation
3. Compare regularization estimation
Contrasting the RSVD and LSQR

Singular Values: RSVD - LSQR - LSQRO - RSVDQ

Relative Error in Singular Values 2–norm error

The LSQRO errors are small as compared to RSVD and RSVDQ
Contrasting the RSVD and LSQR: II

Running time and approximation error

- Running time is high for LSQRO.
- Approximation error for LSQR is high but not for LSQRO.
- Singular values are better approximated by RSVDQ and LSQRO
- Relative errors in solutions high for LSQR

α_k converges with k when singular space approximated well: RSVD, LSQRO, RSVDQ
Example Solutions for Phillips (Trivial)

Parameter k increasing [4, 12, 20, 28, 36, 44, 52, 60]
Observations comparing RSVD and LSQR

- RSVD spectrum does not inherit ill-conditioning of A
- LSQR spectrum does inherit ill-conditioning - unless oversampling is applied
- Dominant spectrum of RSVD is less accurate than LSQR (with or without oversampling)
- Degree of ill-conditioning is relevant. - convergence
- RSVD is far cheaper to find dominant spectrum
- Accuracy of SVD does not imply accuracy of solution - regularization required - problem ill-posed.
- LSQR generates a solution with information from entire spectrum and thus is unstable
- Oversampling in LSQR eliminates the issues with LSQR semiconvergence with increasing k (the instability).

LSQRO as effective as RSVD but expensive
Restoration of Grain noise level $\sigma^2 = .0001$:

Relative Errors decrease with TSVD approximation.

Regularization parameter converges as k increases.
Restored Regularized Solutions noise level $\sigma^2 = .0001$

RSVD - RSVDP - LSQR - LSQRPO

$k = 1200$

RSVDREG
RSVDQREG
LSQRREG
LSQROREG

$k = 2000$

RSVDREG
RSVDQREG
LSQRREG
LSQROREG
Iteratively Reweighted Regularization [LK83]

\[\|Ax - b\|^2 + \alpha^2 \|L^{(\ell)}(x^{(\ell)} - x^{(\ell-1)})\|^2 \]

Minimum Support Stabilizer Regularization operator \(L^{(\ell)}\).

\[
(L^{(\ell)})_{ii} = \left(\left(x_i^{(\ell-1)} - x_i^{(\ell-2)}\right)^2 + \beta^2\right)^{-1/2} \quad \beta > 0
\]

Parameter \(\beta\) ensures \(L^{(\ell)}\) invertible

Invertibility use \((L^{(\ell)})^{-1}\) as right preconditioner for \(A\)

\[
(L^{(\ell)})_{ii}^{-1} = \left(\left(x_i^{(\ell-1)} - x_i^{(\ell-2)}\right)^2 + \beta^2\right)^{1/2} \quad \beta > 0
\]

Initialization \(L^{(0)} = I, \ x^{(0)} = x_0\). (might be 0)

Reduced System When \(\beta = 0\) and \(x_i^{(\ell-1)} = x_i^{(\ell-2)}\) remove column \(i\), \(\hat{A}\) is \(\hat{A}L^{-1}\) with columns removed.

Update Equation Solve \(\hat{A}\hat{y} \approx R = b - Ax^{(\ell-1)}\). With correct indexing set \(y_i = \hat{y}_i\) if updated, else \(y_i = 0\).

\[x^{(\ell)} = x^{(\ell-1)} + y \]

Cost of \(L^{(\ell)}\) is minimal
Undersampled Gravity data $m = 5500$, $n = 66000$ $\beta^2 = 1e - 9$, $k = 1000$
Conclusions

UPRE converges for the TSVD

UPRE therefore converges for the RSVD

UPRE converges for LSQR with oversampling

$\zeta_k^{\text{opt}}, \alpha^{\text{opt}}$ related across levels in all cases

Regularization Find the optimal parameter for reduced subspace and apply for larger number of terms.

Underdetermined problems - also possible.

Extensions approaches apply in other contexts - eg generalized Tikhonov / iterative reweighting (L1)

RSVD or LSQR Results suggest advantages of the RSVD - speed!

LSQR Run with oversampling to avoid issues of semi-convergence.
Thank you

Questions
Some key references

Julianne Chung, James G Nagy, and DIANNE P O'Leary.
A weighted GCV method for Lanczos hybrid regularization.

Percy Deift, James Demmel, Luen-Chau Li, and Carlos Tomei.
The bidiagonal singular value decomposition and hamiltonian mechanics.

N. Halko, P. G. Martinsson, and J. A. Tropp.
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions.

Z. Jia.
The Regularization Theory of the Krylov Iterative Solvers LSQR, CGLS, LSMR and CGME For Linear
Discrete Ill-Posed Problems.

B. J. Last and K. Kubik.
Compact gravity inversion.

R. A. Renaut, S. Vatankhah, and V. E. Ardestani.
Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted gcv for projected
systems.