Contrasting properties of RSVD and LSQR algorithms for solutions of ill-posed problems: Approximating the SVD

Rosemary Renaut1 Anthony Helmstetter 1 Saeed Vatankhah2

1: School of Mathematical and Statistical Sciences, Arizona State University, renaut@asu.edu, anthony.helmstetter@asu.edu

2: Institute of Geophysics, University of Tehran, svatan@ut.ac.ir

International Conference on Mathematics of Data Science
November 2018
Outline

Background: TSVD surrogate for the small scale
Standard Approaches to Estimate Regularization Problem
Convergence of the regularization parameter for UPRE
Algorithm Verification

Methods for the Large Scale: Approximating the SVD
Krylov: Golub Kahan Bidiagonalization - LSQR
Randomized SVD
Simulations: Hybrid RSVD and Hybrid LSQR

Conclusions: RSVD - LSQR
Main Results
Relevance to Data Science
Simple Ill-Posed Problem: Image Restoration

Mildly ill-posed problem: Slow decay of singular values. SNR 13
Notation: Spectral Decomposition of the Solution: The SVD

Consider general discrete problem

\[Ax = b, \quad A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^m, \quad x \in \mathbb{R}^n. \]

Singular value decomposition (SVD) of \(A \) rank \(r \leq \min(m, n) \)

\[A = U \Sigma V^T = \sum_{i=1}^{r} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r). \]

Singular values \(\sigma_i \), singular vectors \(u_i, v_i \), rank \(r \).

Expansion for the solution:

\[x = \sum_{i=1}^{r} \frac{s_i}{\sigma_i} v_i, \quad s_i = u_i^T b \]
Truncated SVD of size k gives best rank-k approximation to A. Surrogate model is given by $A_k \approx U_k \Sigma_k V_k^T$.

Filtered and Truncated solution

$$x = \sum_{i=1}^{k} \gamma_i(\alpha) \frac{s_i}{\sigma_i} v_i$$

Filter Factor $\gamma_i(\alpha)$ ($\gamma_i = 0$ when $i > k$)

Regularization parameters:

- truncation k - find the size for the surrogate model.
- regularization parameter α for the hybrid surrogate.
Regularization Parameter Estimation: Find α^{opt} to minimize $F(\alpha)$

Filter function $\gamma_i(\alpha)$ and complement $\phi_i(\alpha)$.

$\phi(\alpha) = \frac{\alpha^2}{\alpha^2 + \sigma_i^2} = 1 - \gamma_i(\alpha)$, $i = 1 : r$, $\phi_i = 1$, $i > k$.

Unbiased Predictive Risk: Minimize functional, noise level η^2

$$U_k(\alpha) = \sum_{i=1}^{k} \phi_i^2(\alpha)s_i^2 - 2\eta^2 \sum_{i=1}^{k} \phi_i(\alpha)$$

GCV: Minimize rational function, $m^* = \min\{m, n\}$

$$G(\alpha) = \frac{\left(\sum_{i=1}^{m^*} \phi_i^2(\alpha)s_i^2\right)}{\left(\sum_{i=1}^{m^*} \phi_i(\alpha)\right)^2}$$

How does $\alpha^{\text{opt}} = \arg\min F(\alpha)$ depend on k?
Convergence α_k with k for GCV and UPRE: Examples Restore Tools

Different noise levels: GCV and UPRE

Grain
- Mildly Ill-Posed
 \[\sigma_i = \zeta i^{-\tau}, \frac{1}{2} \leq \tau \leq 1 \]

Satellite
- Moderately Ill-Posed
 \[\sigma_i = \zeta i^{-\tau}, \tau > 1 \]

α_k converges with k and depends on noise level.

Supports use of truncated SVD as surrogate
Assumptions (Normalization)
The system is normalized so that we may assume \(\sigma_1 = 1 \).

Assumptions (Decay Rate)
The measured coefficients \(s_i \) decay according to
\[
|s_i|^2 = \sigma_i^{2(1+\nu)} > \sigma^2 \text{ for } 0 < \nu < 1, 1 \leq i \leq \ell, \text{ i.e. the dominant measured coefficients follow the decay rate of the exact coefficients.}
\]

Assumptions (Noise in Coefficients)
There exists \(\ell \) such that \(E(|s_i|^2) = \sigma^2 \) for all \(i > \ell \), i.e. that the coefficients \(s_i \) are noise dominated for \(i > \ell \).
Theorem
Suppose Assumptions 2 and 3, and that $U_k(\alpha_k)$ is a minimum for $U_k(\alpha)$. Then $\alpha_k > \alpha_\ell > \sigma_{\ell+1}/\sqrt{1 - \sigma_{\ell+1}^2} = \alpha_{\min}$ for $k \geq \ell$.

Theorem
Suppose the decay rate and noise assumptions, and that α^{opt}, and each α_k, $k > \ell$ are unique on $\sigma_{\ell+1}/\sqrt{1 - \sigma_{\ell+1}^2} < \alpha < 1$. Then

- $\{\alpha_k\}_{k>\ell}$ is on the average increasing with $\lim_{k \to r} E(\alpha_k) = E(\alpha^{\text{opt}})$.
- $\{U_k(\alpha_k)\}$ is increasing.

Theory can be used to estimate k and α_k.
Comparing Automatic Parameter Estimates by TSVD and SVD

Figure: Box plots comparing parameter estimates α_k with α^{opt} for problem Satellite computed from 100 runs for noise levels 1\%, 5\%, and 10\%.

Robust algorithm verifies choice of k and α_k with increasing k
Comparing Automatic Relative Errors TSVD and SVD

Figure: Box plots comparing relative errors using estimated k and α_k for Full and Truncated SVD: for problem Satellite computed from 100 runs for noise levels 1%, 5%, and 10%.

Surrogate found automatically and error is less than full space
Remark (Observations for UPRE)

1. Find α_k for surrogate model $TSVD A_k = U_k \Sigma_k V_k^T$ with k terms.
2. Determine optimal k as α_k converges to α^{opt}.
3. With UPRE for large enough k the full problem is regularized: i.e. $\gamma_i(\alpha_k) \approx 0$ for $i > k$.

Remark (Extending to Large Scale)

- The TSVD for large problems is not feasible?
- Use iterative methods, randomized SVD to find the surrogate model of A.

Large Scale - Hybrid LSQR: Given \(k \) defines range space

LSQR Let \(\beta_1 := \|b\|_2 \), and \(e_1^{(k+1)} \) first column of \(I_{k+1} \)
Generate, lower bidiagonal \(B_k \in \mathcal{R}^{(k+1) \times k} \), column orthonormal \(H_{k+1} \in \mathcal{R}^{m \times (k+1)} \), \(G_k \in \mathcal{R}^{n \times k} \)

\[
AG_k = H_{k+1}B_k, \quad \beta_1H_{k+1}e_1^{(k+1)} = b.
\]

Projected Problem on projected space: (standard Tikhonov)

\[
w_k(\zeta_k) = \arg\min_{w \in \mathcal{R}^k} \{\|B_k w - \beta_1e_1^{(k+1)}\|_2^2 + \zeta_k^2\|w\|_2^2\}.
\]

Projected Solution depends on \(\zeta_k^{\text{opt}} \): Let \(B_k = \tilde{U}\tilde{\Sigma}\tilde{V}^T \)

\[
x_k(\zeta_k^{\text{opt}}) = G_k w_k(\zeta_k^{\text{opt}}) = \beta_1G_k \sum_{i=1}^{k+1} \gamma_i(\zeta_k^{\text{opt}}) \frac{\tilde{u}_i^T e_1^{(k+1)}}{\tilde{\sigma}_i} \tilde{v}_i
\]

\[
= \sum_{i=1}^{k} \gamma_i(\zeta_k^{\text{opt}}) \frac{\tilde{u}_i^T (H_{k+1}^T b)}{\tilde{\sigma}_i} G_k \tilde{v}_i = \sum_{i=1}^{k} \gamma_i(\zeta_k^{\text{opt}}) \frac{\tilde{s}_i}{\tilde{\sigma}_i} G_k \tilde{v}_i
\]

Approximate SVD: \(\tilde{A}_k = (H_{k+1}\tilde{U})\tilde{\Sigma}(G_k\tilde{V})^T \)
Hybrid Randomized Singular Value Decomposition: Proto [HMT11]

\(A \in \mathcal{R}^{m \times n} \), target rank \(k \), oversampling parameter \(p \), \(k + p \ll m \). Power factor \(q \). Compute \(A \approx \overline{A}_k = \overline{U}_k \overline{\Sigma}_k \overline{V}_k^T \).

1: Generate a Gaussian random matrix \(\Omega \in \mathcal{R}^{n \times (k+p)} \).
2: Compute \(Y = A\Omega \in \mathcal{R}^{m \times (k+p)} \). \(Y = \text{orth}(Y) \).
3: If \(q > 0 \) repeat \(q \) times \{\(Y = A(A^TY), \ Y = \text{orth}(Y) \}\). Power
4: Form \(B = Y^T A \in \mathcal{R}^{(k+p) \times n} \). \((Q = Y) \)
5: Economy SVD \(B = U_B \Sigma_B V_B^T, U_B \in \mathcal{R}^{(k+p) \times (k+p)}, V_B \in \mathcal{R}^{k \times k} \)
6: \(\overline{U}_k = QU_B(:, 1 : k), \overline{V}_k = V_B(:, 1 : k), \overline{\Sigma}_k = \Sigma_B(1 : k, 1 : k) \)

Projected RSVD Problem

\[x_k(\mu_k) = \arg\min_{x \in \mathcal{R}^k} \{ \| \overline{A}_k x - b \|_2^2 + \mu_k^2 \| x \|_2^2 \} \]

\[= \sum_{i=1}^{k} \gamma_i(\mu_k) \frac{\overline{u}_i^T b}{\overline{\sigma}_i} \overline{v}_i. \]

\[= \sum_{i=1}^{k} \gamma_i(\mu_k) \frac{\overline{s}_i}{\overline{\sigma}_i} \overline{v}_i. \]

Approximate SVD \(\overline{A}_k = \overline{U}_k \overline{\Sigma}_k \overline{V}_k^T \).
RSVD and LSQR provide approximate TSVD (see references)

<table>
<thead>
<tr>
<th>Model</th>
<th>TSVD</th>
<th>LSQR</th>
<th>RSVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD</td>
<td>A_k</td>
<td>\tilde{A}_k</td>
<td>\overline{A}_k</td>
</tr>
<tr>
<td></td>
<td>$U_k \Sigma_k V_k^T$</td>
<td>$(H_{k+1} \tilde{U}) \tilde{\Sigma} (G_k \tilde{V})^T$</td>
<td>$\overline{U}_k \Sigma_k \overline{V}_k^T$</td>
</tr>
<tr>
<td>Terms</td>
<td>$s_i u_i^T b$</td>
<td>$(H_{k+1} \tilde{U}_k)^T b$</td>
<td>$\overline{u}_i^T b$</td>
</tr>
<tr>
<td>Basis</td>
<td>v_i</td>
<td>$(G_k \tilde{V}_k)_i$</td>
<td>\overline{v}_i</td>
</tr>
<tr>
<td>Coeff</td>
<td>$\gamma_i(\alpha_k) \frac{s_i}{\sigma_i} v_i$</td>
<td>$\gamma_i(\zeta_k) \frac{\tilde{s}_i}{\tilde{\sigma}_i} (G_k \tilde{V})_i$</td>
<td>$\gamma_i(\mu_k) \frac{s_i}{\sigma_i} \overline{v}_i$</td>
</tr>
<tr>
<td>$|A - A_k|$</td>
<td>Theorem \tilde{A}_k</td>
<td>Theorem \overline{A}_k</td>
<td></td>
</tr>
<tr>
<td>sin($\langle V_k, \overline{V}_k \rangle$)</td>
<td>Golub [GvL96]</td>
<td>Jia [Jia17]</td>
<td>Saibaba [Sai]</td>
</tr>
</tbody>
</table>

Accuracy depends on the surrogate model?
Relative Errors using Approximate LSQR/RSVD with oversampling

OS LSQR conquers semi-convergence for small k.
Hybrid LSQR: LSQR with regularization

Relative Errors for Regularized Solutions

Relative Errors less than TSVD for small k
Hybrid RSVD: RSVD with regularization

Relative Errors for Regularized Solutions $q = 2$

Relative Errors larger than TSVD for small k
Questions to address

1. Both algorithms show semi-convergence.
2. But what is happening with RSVD accuracy?
3. Why is OS for LSQR effective?
4. Relation of α_k, ζ_k, μ_k.
5. Can automatic algorithm be applied

Investigate the surrogate approximation for RSVD and LSQR
Contrasting RSVD and LSQR spectrum: Mildly Ill-posed

Figure: RSVD: Good Approximation of Dominant Singular Values for a problem of size 4096×4096 using the RSVD algorithm using 100% oversampling, as compared to the exact singular values of the problem.
Figure: LSQR: Good Approximation of fewer dominant singular values for a problem of size 4096×4096 using the LSQR algorithm with a Krylov subspace of size k, as compared to the exact singular values of the problem.
Figure: LSQR: Good Approximation of fewer dominant singular values for a problem of size 4096×4096 using the LSQR algorithm with a Krylov subspace of size k, as compared to the exact singular values of the problem. Oversampled 100%
The Lanczos algorithm provides good estimates of extremal singular values

- LSQR exhibits **semi-convergence** as a result.
- LSQR interior eigenvalue approximations *improve* with increasing \(k \) - approximations *stabilize* with increasing \(k \).
- RSVD approximates dominant singular values, does not capture ill-conditioning.
Figure: Rank k approximation error RSVD Power with $q = 2$

Power Iteration assists error reduction.
Figure: Rank k approximation error RSVD $q = 2$ and OS LSQR

Oversampling LSQR improves rank k estimate
Figure: RSVD: The canonical angles increase exponentially for subspace j to subspace k from 4096×4096 using the RSVD algorithm and decrease with OS: Example Size $k = 400$.

![Graph showing RSVD angles for different percentages of data](image-url)
Figure: RSVD with power iteration 2: The canonical angles increase exponentially for subspace j to subspace k from 4096×4096 using the RSVD algorithm and decrease with OS: Example Size $k = 400$
Figure: LSQR: The canonical angles increase after some subspace size j^* to subspace k from 4096×4096 using the RSVD algorithm: Example Size $k = 400$
IMPACT: V Basis Matrices (2D) - Lower basis vectors

LSQR

RSVD

$k = 100$ $p = 100\%$

RSVD $q = 2$

$k = 400$ $p = 100\%$
Observations: LSQR and RSVD

1. LSQR : semi-convergence
2. OS LSQR : overcomes semi-convergence
3. RSVD has smaller rank k error than LS.
4. BUT RSVD does not capture the subspace of rank k from a $k + p$ estimate as well as LSQR - canonical angles are larger.
5. Plots of the basis support the reduced accuracy of the RSVD subspaces

Restored solutions at optimal $k = 750, 50$ for RSVD, LSQR, resp.
Restored Regularized Solutions noise level with SNR ≈ 13

Figure: LSQR $k = 50$

- $k=50$ $p=0\%$
- $k=50$ $p=10\%$
- $k=50$ $p=20\%$
- $k=50$ $p=80\%$
Restored Regularized Solutions noise level with SNR \(\approx 13 \)

Figure: RSVD \(k = 50 \)

- \(k=50 \) p=0\% q=2
- \(k=50 \) p=10\% q=2
- \(k=50 \) p=20\% q=2
- \(k=50 \) p=80\% q=2
Restored Regularized Solutions noise level with SNR ≈ 13

Figure: LSQR $k = 750$

- $k=750$ $p=0$
- $k=750$ $p=10$
- $k=750$ $p=20$
- $k=750$ $p=80$
Restored Regularized Solutions noise level with SNR ≈ 13

Figure: RSVD $k = 750$

- $k=750$ $p=0\%$ $q=2$
- $k=750$ $p=10\%$ $q=2$
- $k=750$ $p=20\%$ $q=2$
- $k=750$ $p=80\%$ $q=2$
Dominant Subspace Finding dominant singular space of model matrix is important: Oversampling

RSVD / LSQR Trade offs depend on speed by which singular values decrease (degree of ill-posedness)

Cost While LSQR costs more per iteration, provides the dominant subspace more accurately for k small.

Hybrid Implementations stabilize the solution errors.

Future Investigate transfer of noise to the RSVD subspace - apparently inaccurate.
Remark (Messages of the Analysis)

- SVD plays a role in analysis of large datasets?
- Impact of approximating the spectrum by surrogates?
- Important to understand impact of noise on spectrum
- Important to analyze the methods
Some key references

Gene H. Golub and Charles F. van Loan.
Matrix computations.

N. Halko, P. G. Martinsson, and J. A. Tropp.
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.

Zhongxiao Jia.
The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value case.

Convergence of regularization parameters for solutions using the filtered truncated singular value decomposition.
Submitted.

Arvind K. Saibaba.
Analysis of randomized subspace iteration: Canonical angles and unitarily invariant norms.