SOLUTION OF ILL-POSED INVERSE PROBLEMS PERTAINING TO SIGNAL RESTORATION: TOTAL VARIATION RESTORATION

Rosemary Renaut
http://math.asu.edu/~rosie

MANCHESTER
MARCH 23, 2012
Outline

Background
- Examples of Ill-posed problems
- SVD for examining the solution
- Importance of the Basis
- Picard Condition for Ill-Posed Problems

Generalized regularization
- GSVD for examining the solution

Alternative Regularizers: Total Variation
- Algorithms for TV

Regularization Parameter Estimation for TV

Conclusions and Future
Illustration: Blurred Signal Restoration

\[b(t) = \int_{-\pi}^{\pi} h(t, s)x(s)ds \]

\[h(s) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-s^2}{2\sigma^2}\right), \sigma > 0. \]
Forward Problem: Given x, A calculate b

- x the source is sampled at s_j, $b(t)$ is measured at t_i.
- The kernel h describes matrix A: integral is approximated using numerical quadrature (weights w_j) yielding a matrix A.
- Matrix equation
 \[\mathbf{b} = A\mathbf{x} \]
 describes the linear relationship
- Generally $\int_{a}^{b} h(x) dx = 1$ (for PSF no energy is introduced, the signal is spread) leads to the normalization $\sum_j w_j h(x_j) = 1$.
- When $h(s, t) = h(t - s)$: kernel is **spatially invariant**.
- Typical choice of $h(x)$ is the Gaussian blur - a low pass filter. Also interested in the general integral equation problem.
Inverse Problem given A, b find x

The solution depends on the conditioning of A and on the noise in measurements b. Condition of A is $1.8679e + 05$ Restoration with noise .0001: $x = A^{-1}b$

(Almost committing the inverse crime)
Example of restoration of 2D image with low noise

Figure: Original
Example of restoration of 2D image with low noise

Figure: Noisy and Blurred 10^{-5}
Example of restoration of 2D image with low noise

Figure: Restored 10^{-5} inverse crime
Example of restoration of 2D image with low noise

Figure: Noisy and Blurred 10^{-3}
Example of restoration of 2D image with low noise

Figure: Restored 10^{-3}
Goals Given data b and kernel h find x

Features One may wish to find features from x, for example the edges in the signal

Difficulties The solution is very sensitive to the data

Ill-Posed (according to Hadamard) A problem is ill-posed if it does not satisfy conditions for well-posedness, OR

1. $b \notin \text{range}(A)$
2. inverse is not unique because more than one image is mapped to the same data, or
3. an arbitrarily small change in b can cause an arbitrarily large change in x.

Solution Analyse the formulation.
Goals Given data b and kernel h find x

Features One may wish to find features from x, for example the edges in the signal

Difficulties The solution is very sensitive to the data

Ill-Posed (according to Hadamard) A problem is ill-posed if it does not satisfy conditions for well-posedness, OR

1. $b \notin \text{range}(A)$
2. inverse is not unique because more than one image is mapped to the same data, or
3. an arbitrarily small change in b can cause an arbitrarily large change in x.

Solution Analyse the formulation.
Summary

Goals Given data b and kernel h find x

Features One may wish to find features from x, for example the edges in the signal

Difficulties The solution is very sensitive to the data

Ill-Posed (according to Hadamard) A problem is ill-posed if it does not satisfy conditions for well-posedness, OR

1. $b \notin \text{range}(A)$
2. inverse is not unique because more than one image is mapped to the same data, or
3. an arbitrarily small change in b can cause an arbitrarily large change in x.

Solution Analyse the formulation.
Summary

Goals Given data b and kernel h find x

Features One may wish to find features from x, for example the edges in the signal

Difficulties The solution is very sensitive to the data

Ill-Posed (according to Hadamard) A problem is ill-posed if it does not satisfy conditions for well-posedness, OR

1. $b \notin \text{range}(A)$
2. inverse is not unique because more than one image is mapped to the same data, or
3. an arbitrarily small change in b can cause an arbitrarily large change in x.

Solution Analyse the formulation.
Summary

Goals Given data \(\mathbf{b} \) and kernel \(h \) find \(\mathbf{x} \)

Features One may wish to find features from \(\mathbf{x} \), for example the edges in the signal

Difficulties The solution is very sensitive to the data

Ill-Posed (according to Hadamard) A problem is **ill-posed** if it does not satisfy conditions for well-posedness, OR

1. \(\mathbf{b} \notin \text{range}(A) \)
2. inverse is not unique because more than one image is mapped to the same data, or
3. an arbitrarily small change in \(\mathbf{b} \) can cause an arbitrarily large change in \(\mathbf{x} \).

Solution Analyse the formulation.
Consider general overdetermined discrete problem

\[Ax = b, \quad A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^m, \quad x \in \mathbb{R}^n, \quad m \geq n. \]

Singular value decomposition (SVD) of \(A \) (full column rank)

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n). \]

gives expansion for the solution

\[x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i \]

\(u_i, v_i \) are left and right singular vectors for \(A \)

Solution is a weighted linear combination of the basis vectors \(v_i \)
Spectral Decomposition of the Solution: The SVD

Consider general overdetermined discrete problem

\[Ax = b, \quad A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^m, \quad x \in \mathbb{R}^n, \quad m \geq n. \]

Singular value decomposition (SVD) of \(A \) (full column rank)

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n). \]

gives expansion for the solution

\[x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i \]

\(u_i, v_i \) are left and right singular vectors for \(A \)
Solution is a weighted linear combination of the basis vectors \(v_i \)
Consider general overdetermined discrete problem

\[A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}, \quad \mathbf{x} \in \mathbb{R}^{n}, \quad m \geq n. \]

Singular value decomposition (SVD) of \(A \) (full column rank)

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n). \]

gives expansion for the solution

\[\mathbf{x} = \sum_{i=1}^{n} \frac{u_i^T \mathbf{b}}{\sigma_i} v_i \]

\(u_i, v_i \) are left and right singular vectors for \(A \)

Solution is a weighted linear combination of the basis vectors \(v_i \)
Consider general overdetermined discrete problem

\[A \mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}, \quad \mathbf{x} \in \mathbb{R}^{n}, \quad m \geq n. \]

Singular value decomposition (SVD) of \(A \) (full column rank)

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n). \]

gives expansion for the solution

\[\mathbf{x} = \sum_{i=1}^{n} \frac{u_i^T \mathbf{b}}{\sigma_i} v_i \]

\(u_i, v_i \) are left and right singular vectors for \(A \)

Solution is a \textit{weighted} linear combination of the basis vectors \(v_i \).
Consider general overdetermined discrete problem

\[A \mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \quad \mathbf{b} \in \mathbb{R}^{m}, \quad \mathbf{x} \in \mathbb{R}^{n}, \quad m \geq n. \]

Singular value decomposition (SVD) of \(A \) (full column rank)

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n). \]

gives expansion for the solution

\[\mathbf{x} = \sum_{i=1}^{n} \frac{u_i^T \mathbf{b}}{\sigma_i} v_i \]

\(u_i, v_i \) are left and right singular vectors for \(A \)

Solution is a \textit{weighted} linear combination of the basis vectors \(v_i \)
Illustration: Example of the basis vectors

Problem wing \(n = 84 \): Evaluating impact of higher precision. Cond\((A) = 2.2056e + 19 \). Hansen’s Regularization Toolbox.

\[
 h(s, t) = se^{-ts^2}, \quad x(s) = 1, \quad \frac{1}{3} < t < \frac{2}{3} \quad b(t) = \frac{e^{-t/9} - e^{-4t/9}}{2t}
\]
Figure: The first few left singular vectors u_i and basis vectors v_i. Are the results correct?
Use Matlab High Precision to examine the SVD

- Matlab digits allows high precision. Standard is 32.
- Symbolic toolbox allows operations on high precision variables with vpa.
- SVD for vpa variables calculates the singular values symbolically, but not the singular vectors.
- Higher accuracy for the SVs generates higher accuracy singular vectors.
- Solutions with high precision can take advantage of Matlab’s symbolic toolbox.
Left Singular Vectors and Basis Calculated in High Precision

Figure: The first few left singular vectors u_i and basis vectors v_i. Apparently with higher precision we preserve the frequency content of the basis. How many can we use in the solution for x?
Suppose for a given vector \(y \) that it is a time series indexed by position, i.e. index \(i \).

Diagnostic 1 Does the histogram of entries of \(y \) generate histogram consistent with \(y \sim \mathcal{N}(0, 1) \)? (i.e. independent normally distributed with mean 0 and variance 1) Not practical to automatically look at a histogram and make an assessment

Diagnostic 2 Test the expectation that \(y_i \) are selected from a white noise time series. Take the Fourier transform of \(y \) and form cumulative periodogram \(z \) from power spectrum \(c \)

\[
c_j = |(\text{dft}(y)_j|^2, \quad z_j = \frac{\sum_{i=1}^{j} c_j}{\sum_{i=1}^{q} c_i}, \quad j = 1, \ldots, q,
\]

Automatic: Test is the line \((z_j, j/q)\) close to a straight line with slope 1 and length \(\sqrt{5}/2\)?
Suppose for a given vector y that it is a time series indexed by position, i.e. index i.

Diagnostic 1 Does the histogram of entries of y generate histogram consistent with $y \sim \mathcal{N}(0, 1)$? (i.e. independent normally distributed with mean 0 and variance 1) Not practical to automatically look at a histogram and make an assessment

Diagnostic 2 Test the expectation that y_i are selected from a white noise time series. Take the Fourier transform of y and form cumulative periodogram z from power spectrum c

$$
c_j = |(\text{dft}(y)_j|^2, \quad z_j = \frac{\sum_{i=1}^{j} c_j}{\sum_{i=1}^{q} c_i}, \quad j = 1, \ldots, q,
$$

Automatic: Test is the line $(z_j, j/q)$ close to a straight line with slope 1 and length $\sqrt{5}/2$?
Power Spectrum for detecting white noise: a time series analysis technique

Suppose for a given vector y that it is a time series indexed by position, i.e. index i.

Diagnostic 1 Does the histogram of entries of y generate histogram consistent with $y \sim \mathcal{N}(0, 1)$? (i.e. independent normally distributed with mean 0 and variance 1) Not practical to automatically look at a histogram and make an assessment.

Diagnostic 2 Test the expectation that y_i are selected from a white noise time series. Take the Fourier transform of y and form cumulative periodogram z from power spectrum c

$$c_j = |(\text{dft}(y)_j|^2, \quad z_j = \frac{\sum_{i=1}^{j} c_j}{\sum_{i=1}^{q} c_i}, \quad j = 1, \ldots, q,$$

Automatic: Test is the line $(z_j, j/q)$ close to a straight line with slope 1 and length $\sqrt{5}/2$?
Cumulative Periodogram for the left singular vectors

Figure: Standard precision on the left and high precision on the right: On left more vectors are close to white than on the right - vectors are white if the CP is close to the diagonal on the plot.
Figure: Standard precision on the left and high precision on the right: On left more vectors are close to white than on the right - if you count there are 9 vectors with true frequency content on the left.
Figure: Testing for white noise for the standard precision vectors: Calculate the cumulative periodogram and measure the deviation from the “white noise” line. In this case it suggests that about 9 vectors are noise free.

Cannot expect to use more than 9 vectors in the expansion for x. Additional terms are contaminated by noise - independent of noise in b.

Measure Deviation from Straight Line: Basis Vectors
Figure: Testing for white noise for the standard precision vectors: Calculate the cumulative periodogram and measure the deviation from the “white noise” line. In this case it suggests that about 9 vectors are noise free.

Cannot expect to use more than 9 vectors in the expansion for x. Additional terms are contaminated by noise - independent of noise in b.
Discrete Picard condition: examine the weights of the expansion

Recall

\[x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i \]

Here

\[|u_i^T b| / \sigma_i = \mathcal{O}(1) \]

Ratios are not large but are the values correct? Considering only the discrete Picard condition does not tell us whether the expansion for the solution is correct.
Discrete Picard condition: examine the weights of the expansion

- From high precision calculation of σ_i shows they decay exponentially to zero (down to machine precision)
- The Picard condition considers ratios $|u_i^T b|/\sigma_i$ for data b; they decay exponentially (down to the machine precision).
- Note ratios in this case are $O(1)$ - hence noise contaminated basis vectors are not ignored. i.e. to approximate a solution with a discontinuity we need all the basis vectors.
- We may obtain solutions by truncating the SVD

$$ x = \sum_{i=1}^{k} \frac{u_i^T b}{\sigma_i} v_i $$

- Now parameter k is a regularization parameter
- For given example we know $k < 10$ independent of the measured data b. We cannot see this from the Picard condition.
The Truncated Solutions (Noise free data b)

Figure: Truncated SVD Solutions: Standard precision $|u_i^T b|$. Error in the basis contaminates the solution
Figure: Truncated SVD Solutions: VPA calculation $|u_i^Tb|$. Number of terms not sufficient to represent the solution discontinuity
Observations

- Even when committing the inverse crime we will not achieve the solution if we cannot approximate the basis correctly.
- We need all basis vectors which contain the high frequency terms in order to approximate a solution with high frequency components - e.g. edges.
- Reminder - this is independent of the data.
- But is an indication of an ill-posed problem. In this case the data that is modified exhibits in the matrix A decomposition.
- We look at a problem with a smoother solution - what are the issues?

Problem shaw from the regularization toolbox defined on interval $[-\pi/2, \pi/2]$

$$h(s,t) = (\cos(s) + \cos(t))(\sin(u)/u)^2, \quad u = \pi(\sin(s) + \sin(t))$$

$$x(t) = 2 \exp(-6(t - .8)^2) + \exp(-2(t + .5)^2)$$
Observations

- Even when committing the inverse crime we will not achieve the solution if we cannot approximate the basis correctly.
- We need all basis vectors which contain the high frequency terms in order to approximate a solution with high frequency components - e.g. edges.
- Reminder - this is independent of the data.
- But is an indication of an ill-posed problem. In this case the data that is modified exhibits in the matrix A decomposition.
- We look at a problem with a smoother solution - what are the issues?

Problem shaw from the regularization toolbox defined on interval $[-\pi/2, \pi/2]$

$$h(s, t) = (\cos(s) + \cos(t))(\sin(u)/u)^2, \ u = \pi(\sin(s) + \sin(t))$$

$$x(t) = 2 \exp(-6(t - .8)^2) + \exp(-2(t + .5)^2)$$
Observations

- Even when committing the inverse crime we will not achieve the solution if we cannot approximate the basis correctly.
- We need all basis vectors which contain the high frequency terms in order to approximate a solution with high frequency components - e.g. edges.
- Reminder - this is independent of the data.
- But is an indication of an ill-posed problem. In this case the data that is modified exhibits in the matrix A decomposition.
- We look at a problem with a smoother solution - what are the issues?

Problem shaw from the regularization toolbox defined on interval $[-\pi/2, \pi/2]$

$$h(s, t) = (\cos(s) + \cos(t))(\sin(u)/u)^2, \ u = \pi(\sin(s) + \sin(t))$$

$$x(t) = 2 \exp(-6(t - .8)^2) + \exp(-2(t + .5)^2)$$
Observations

▶ Even when committing the inverse crime we will not achieve the solution if we cannot approximate the basis correctly.
▶ We need all basis vectors which contain the high frequency terms in order to approximate a solution with high frequency components - e.g. edges.
▶ Reminder - this is independent of the data.
▶ But is an indication of an ill-posed problem. In this case the data that is modified exhibits in the matrix A decomposition.
▶ We look at a problem with a smoother solution - what are the issues?

Problem shaw from the regularization toolbox defined on interval $[-\pi/2, \pi/2]$

$$h(s, t) = (\cos(s) + \cos(t))(\sin(u)/u)^2, \ u = \pi(\sin(s) + \sin(t))$$

$$x(t) = 2 \exp(-6(t - .8)^2) + \exp(-2(t + .5)^2)$$
Observations

- Even when committing the inverse crime we will not achieve the solution if we cannot approximate the basis correctly.
- We need all basis vectors which contain the high frequency terms in order to approximate a solution with high frequency components - e.g. edges.
- Reminder - this is independent of the data.
- But is an indication of an ill-posed problem. In this case the data that is modified exhibits in the matrix A decomposition.
- We look at a problem with a smoother solution - what are the issues?

Problem shaw from the regularization toolbox defined on interval $[-\pi/2, \pi/2]$

$$h(s, t) = (\cos(s) + \cos(t))(\sin(u)/u)^2, \ u = \pi(\sin(s) + \sin(t))$$

$$x(t) = 2 \exp(-6(t - .8)^2) + \exp(-2(t + .5)^2)$$
Basis vectors for problem shaw

Figure: The first few left singular vectors \(\mathbf{v}_i \) (left) and their white noise content on the right.
The Solutions with truncated SVD- problem shaw

Figure: Truncated SVD Solutions: data enters through coefficients $|u_i^T b|$. On the left no noise in b and on the right with noise 10^{-4}.

In this case the low frequency vectors can represent the solution but we need to know the regularization parameter k.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

\[x = \sum_{i=1}^{n} \left(\frac{u_i^T(b_{\text{exact}} + e)}{\sigma_i} \right) v_i = x_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{u_i^T e}{\sigma_i} \right) v_i \]

- If e is uniform, we expect $|u_i^T e|$ to be similar magnitude $\forall i$.
- When $\sigma_i << |u_i^T e|$ contribution of the high frequency error is magnified.
- Impact of basis vector v_i is magnified.
- The truncated SVD is a special case of spectral filtering

\[x_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i \]

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

$$
x = \sum_{i=1}^{n} \left(\frac{u_i^T (b_{\text{exact}} + e)}{\sigma_i} \right) v_i = x_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{u_i^T e}{\sigma_i} \right) v_i
$$

- If e is uniform, we expect $|u_i^T e|$ to be similar magnitude $\forall i$.
- When $\sigma_i \ll |u_i^T e|$ contribution of the high frequency error is magnified.
- Impact of basis vector v_i is magnified.
- The truncated SVD is a special case of spectral filtering

$$
x_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i
$$

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

$$
\begin{align*}
\mathbf{x} &= \sum_{i=1}^{n} \left(\frac{\mathbf{u}_i^T \left(\mathbf{b}_{\text{exact}} + e \right)}{\sigma_i} \right) \mathbf{v}_i = \mathbf{x}_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{\mathbf{u}_i^T e}{\sigma_i} \right) \mathbf{v}_i \\
\end{align*}
$$

- If e is uniform, we expect $|\mathbf{u}_i^T e|$ to be similar magnitude $\forall i$.
- When $\sigma_i \ll |\mathbf{u}_i^T e|$ contribution of the high frequency error is magnified.
- Impact of basis vector \mathbf{v}_i is magnified.
- The truncated SVD is a special case of spectral filtering

$$
\mathbf{x}_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \right) \mathbf{v}_i
$$

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

\[
x = \sum_{i=1}^{n} \left(\frac{u_i^T(b_{\text{exact}} + e)}{\sigma_i} \right) v_i = x_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{u_i^T e}{\sigma_i} \right) v_i
\]

- If e is uniform, we expect $|u_i^T e|$ to be similar magnitude $\forall i$.
- When $\sigma_i \ll |u_i^T e|$ contribution of the high frequency error is magnified.
- Impact of basis vector v_i is magnified.
- The truncated SVD is a special case of spectral filtering

\[
x_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i
\]

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

$$x = \sum_{i=1}^{n} \left(\frac{u_i^T(b_{\text{exact}} + e)}{\sigma_i} \right) v_i = x_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{u_i^T e}{\sigma_i} \right) v_i$$

- If e is uniform, we expect $|u_i^T e|$ to be similar magnitude $\forall i$.
- When $\sigma_i \ll |u_i^T e|$ contribution of the high frequency error is magnified.
- Impact of basis vector v_i is magnified.
- The truncated SVD is a special case of spectral filtering

$$x_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i$$

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

$$
\mathbf{x} = \sum_{i=1}^{n} \left(\frac{\mathbf{u}_i^T (\mathbf{b}_{\text{exact}} + \mathbf{e})}{\sigma_i} \right) \mathbf{v}_i = \mathbf{x}_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{\mathbf{u}_i^T \mathbf{e}}{\sigma_i} \right) \mathbf{v}_i
$$

- If e is uniform, we expect $|\mathbf{u}_i^T \mathbf{e}|$ to be similar magnitude $\forall i$.
- When $\sigma_i << |\mathbf{u}_i^T \mathbf{e}|$ contribution of the high frequency error is magnified.
- Impact of basis vector \mathbf{v}_i is magnified.
- The truncated SVD is a special case of spectral filtering

$$
\mathbf{x}_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \right) \mathbf{v}_i
$$

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Observations from the SVD analysis in presence of noise

- Number of terms k in TSVD depends on v_i.
- Practically measured data also contaminated by noise e.

$$
x = \sum_{i=1}^{n} \left(\frac{u_i^T(b_{\text{exact}} + e)}{\sigma_i} \right) v_i = x_{\text{exact}} + \sum_{i=1}^{n} \left(\frac{u_i^T e}{\sigma_i} \right) v_i
$$

- If e is uniform, we expect $|u_i^T e|$ to be similar magnitude $\forall i$.
- When $\sigma_i \ll |u_i^T e|$ contribution of the high frequency error is magnified.
- Impact of basis vector v_i is magnified.
- The truncated SVD is a special case of spectral filtering

$$
x_{\text{filt}} = \sum_{i=1}^{n} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i
$$

- Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.
Regularization by Spectral Filtering: This is Tikhonov regularization

\[x_{\text{Tik}} = \sum_{i=1}^{n} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i \]

- Tikhonov Regularization \(\gamma_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \), \(i = 1 \ldots n \), \(\lambda \) is the regularization parameter, and solution is

\[x_{\text{Tik}}(\lambda) = \arg \min_x \{ \| b - Ax \|^2 + \lambda^2 \| x \|^2 \} \]

- Choice of \(\lambda^2 \) impacts the solution.
1-D Interesting but Noisy Signal

Blur with Gaussian and add noise - can we find the solution?
Solution for Increasing λ

Regularized Solution $\lambda = 0.001$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.0021544$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.0046416$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.01$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.021544$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.046416$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.1$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.21544$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 0.46416$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 1$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\lambda = 2.1544$

Solutions $x(\lambda)$
Solution for Increasing λ

Regularized Solution $\hat{\lambda} = 4.6416$

Solutions $x(\lambda)$
Solution for Increasing λ
Notice gradients in the solution are smoothed

Consider the more general weighting $\|Lx\|^2$

$$x(\lambda) = \arg \min_x \{ \|Ax - b\|^2 + \lambda^2\|Lx\|^2 \}$$

Typical L approximates the first or second order derivative

$$L_1 = \begin{pmatrix} -1 & 1 & \cdots & \cdots & -1 & 1 \\ -1 & 1 & & & & \end{pmatrix}, \quad L_2 = \begin{pmatrix} 1 & -2 & 1 & & & \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ & & & & & 1 & -2 & 1 \end{pmatrix}$$

$L_1 \in \mathbb{R}^{(n-1) \times n}$ and $L_2 \in \mathbb{R}^{(n-2) \times n}$. Note that neither L_1 nor L_2 are invertible.
Notice gradients in the solution are smoothed
Consider the more general weighting $\|Lx\|^2$

$$x(\lambda) = \arg\min_x \{\|Ax - b\|^2 + \lambda^2\|Lx\|^2\}$$

Typical L approximates the first or second order derivative

$$L_1 = \begin{pmatrix} -1 & 1 & \cdots & \cdots & -1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ -1 & 1 \end{pmatrix} \quad L_2 = \begin{pmatrix} 1 & -2 & 1 \\ \cdots & \ddots & \ddots & \cdots \\ 1 & -2 & 1 \end{pmatrix}$$

$L_1 \in \mathbb{R}^{(n-1) \times n}$ and $L_2 \in \mathbb{R}^{(n-2) \times n}$. Note that neither L_1 nor L_2 are invertible.
Extending the Regularization - Change the basis

Notice gradients in the solution are smoothed
Consider the more general weighting $\|Lx\|^2$

$$x(\lambda) = \arg \min_x \{\|Ax - b\|^2 + \lambda^2 \|Lx\|^2\}$$

Typical L approximates the first or second order derivative

$$L_1 = \begin{pmatrix} -1 & 1 \\ \\ \\ \vdots & \ddots & \ddots \\ \\ -1 & 1 \end{pmatrix} \quad L_2 = \begin{pmatrix} 1 & -2 & 1 \\ \vdots & \ddots & \ddots & \ddots \\ 1 & -2 & 1 \end{pmatrix}$$

$L_1 \in \mathbb{R}^{(n-1)\times n}$ and $L_2 \in \mathbb{R}^{(n-2)\times n}$. Note that neither L_1 nor L_2 are invertible.
Notice gradients in the solution are smoothed
Consider the more general weighting $\|Lx\|^2$

$$x(\lambda) = \arg \min_x \{ \|Ax - b\|^2 + \lambda^2 \|Lx\|^2 \}$$

Typical L approximates the first or second order derivative

$$L_1 = \begin{pmatrix} -1 & 1 \\ \vdots & \vdots \\ -1 & 1 \end{pmatrix} \quad L_2 = \begin{pmatrix} 1 & -2 & 1 \\ \vdots & \vdots & \vdots \\ 1 & -2 & 1 \end{pmatrix}$$

$L_1 \in \mathbb{R}^{(n-1)\times n}$ and $L_2 \in \mathbb{R}^{(n-2)\times n}$. Note that neither L_1 nor L_2 are invertible.
The Generalized Singular Value Decomposition

Introduce generalization of the SVD to obtain a expansion for

\[
x(\lambda) = \arg \min_x \{ \| Ax - b \|^2 + \lambda^2 \| L(x - x_0) \|^2 \}
\]

Lemma (GSVD)

Assume invertibility and \(m \geq n \geq p \). There exist unitary matrices \(U \in \mathbb{R}^{m \times m} \), \(V \in \mathbb{R}^{p \times p} \), and a nonsingular matrix \(Z \in \mathbb{R}^{n \times n} \) such that

\[
A = U \begin{bmatrix}
\Upsilon \\
0_{(m-n) \times n}
\end{bmatrix} Z^T, \quad L = V[M, 0_{p \times (n-p)}] Z^T,
\]

\[
\Upsilon = \text{diag}(\nu_1, \ldots, \nu_p, 1, \ldots, 1) \in \mathbb{R}^{n \times n}, \quad M = \text{diag}(\mu_1, \ldots, \mu_p) \in \mathbb{R}^{p \times p},
\]

with

\[
0 \leq \nu_1 \leq \cdots \leq \nu_p \leq 1, \quad 1 \geq \mu_1 \geq \cdots \geq \mu_p > 0, \quad \nu_i^2 + \mu_i^2 = 1, \quad i = 1, \ldots, p.
\]

Use \(\tilde{\Upsilon} \) and \(\tilde{M} \) to denote the rectangular matrices containing \(\Upsilon \) and \(M \).
Solution of the Generalized Problem using the GSVD

We can use the GSVD to write down the solution for the generalized problem:

\[
x(\lambda) = \sum_{i=1}^{p} \frac{\nu_i}{\nu_i^2 + \lambda^2 \mu_i^2} (u_i^T b) \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i
\]

where \(\tilde{z}_i \) is the \(i^{th} \) column of \((Z^T)^{-1} \).

With generalized singular value \(\rho_i = \nu_i / \mu_i, i = 1, \ldots, p \)

\[
x(\lambda) = \sum_{i=1}^{p} \gamma_i \frac{u_i^T b}{\nu_i} \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i,
\]

\[
Lx(\lambda) = \sum_{i=1}^{p} \gamma_i \frac{u_i^T b}{\rho_i} v_i, \quad \gamma_i = \frac{\rho_i^2}{\rho_i^2 + \lambda^2},
\]

Notice the similarity with the filtered SVD solution

\[
x(\lambda) = \sum_{i=1}^{n} \gamma_i \frac{u_i^T b}{\sigma_i} v_i, \quad \gamma_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2}.
\]
Solution of the Generalized Problem using the GSVD

We can use the GSVD to write down the solution for the generalized problem:

\[
x(\lambda) = \sum_{i=1}^{p} \frac{\nu_i}{\nu_i^2 + \lambda^2 \mu_i^2} (u_i^T b) \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i
\]

where \(\tilde{z}_i \) is the \(i \)th column of \((Z^T)^{-1}\).

With generalized singular value \(\rho_i = \nu_i/\mu_i \), \(i = 1, \ldots, p \)

\[
x(\lambda) = \sum_{i=1}^{p} \gamma_i \frac{u_i^T b}{\nu_i} \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i,
\]

\[
Lx(\lambda) = \sum_{i=1}^{p} \gamma_i \frac{u_i^T b}{\rho_i} v_i, \quad \gamma_i = \frac{\rho_i^2}{\rho_i^2 + \lambda^2},
\]

Notice the similarity with the filtered SVD solution

\[
x(\lambda) = \sum_{i=1}^{n} \gamma_i \frac{u_i^T b}{\sigma_i} v_i, \quad \gamma_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2}.
\]
Solution of the Generalized Problem using the GSVD

We can use the GSVD to write down the solution for the generalized problem:

\[
x(\lambda) = \sum_{i=1}^{p} \frac{\nu_i}{\nu_i^2 + \lambda^2 \mu_i^2} (u_i^T b) \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i
\]

where \(\tilde{z}_i \) is the \(i \)th column of \((Z^T)^{-1}\).

With generalized singular value \(\rho_i = \nu_i/\mu_i \), \(i = 1, \ldots, p \)

\[
x(\lambda) = \sum_{i=1}^{p} \gamma_i \frac{u_i^T b}{\nu_i} \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i,
\]

\[
Lx(\lambda) = \sum_{i=1}^{p} \gamma_i \frac{u_i^T b}{\rho_i} v_i, \quad \gamma_i = \frac{\rho_i^2}{\rho_i^2 + \lambda^2},
\]

Notice the similarity with the filtered SVD solution

\[
x(\lambda) = \sum_{i=1}^{n} \gamma_i \frac{u_i^T b}{\sigma_i} v_i, \quad \gamma_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2}.
\]
Figure: The basis vectors \tilde{z}_i for x in reverse order - Observe frequency increases in reverse order; not orthogonal.
Figure: Basis vectors v_i in reverse order for Lx. Observe frequency increases in reverse order, vectors are not noise contaminated. L acts as a smoother for the basis.
Picard condition for the GSVD: for x and Lx examine the weights in the expansion

Figure: Weights for the expansion - $\lambda = .0001$ - blow up together
Picard condition for the GSVD: for x and Lx examine the weights in the expansion.

Figure: Weights for the expansion - $\lambda = 0.05$ separate for low frequency.
Picard condition for the GSVD: for x and Lx examine the weights in the expansion

Figure: Weights for the expansion - $\lambda = 5$

Notice that for L_1, ν_i are small except for large i, i.e. $\mu_i \approx 1$
Solutions x and the derivative Lx for changing λ

Figure: We cannot capture Lx (red) from the solution (green): Notice that $\|Lx\|$ decreases as λ increases
Solutions x and the derivative Lx for changing λ

Figure: We cannot capture Lx (red) from the solution (green): Notice that $\|Lx\|$ decreases as λ increases.
Solutions x and the derivative Lx for changing λ

Figure: We cannot capture Lx (red) from the solution (green): Notice that $\|Lx\|$ decreases as λ increases
Solutions \mathbf{x} and the derivative $L\mathbf{x}$ for changing λ

Figure: We cannot capture $L\mathbf{x}$ (red) from the solution (green): Notice that $\|L\mathbf{x}\|$ decreases as λ increases
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions.

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors.

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients.

Regularizing with respect to Lx does not give any realistic estimate of Lx!
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients

Regularizing with respect to Lx does not give any realistic estimate of Lx!
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors.

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients.

Regularizing with respect to Lx does not give any realistic estimate of Lx!
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients

Regularizing with respect to Lx does not give any realistic estimate of Lx!
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients

Regularizing with respect to L_x does not give any realistic estimate of L_x!
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients

Regularizing with respect to Lx does not give any realistic estimate of Lx!
Without noise the basis vectors are still subject to noise and contaminate the solution.

TSVD cannot capture features of solutions.

Solutions require finding k.

Using the GSVD we see that Tikhonov regularization yields a basis with smoothed basis vectors.

We cannot represent high frequency information in the solutions.

We cannot represent edges or steep gradients.

Regularizing with respect to Lx does not give any realistic estimate of Lx!
Another approach: Total Variation Regularization

A more general regularization term $R(x)$ may be considered to better preserve properties of the solution x:

$$x(\lambda) = \arg \min \{ \|Ax - b\|_W^2 + \lambda^2 R(x) \}$$

Suppose R is total variation of x (general options are possible). The total variation for a function x defined on a discrete grid is

$$TV(x(s)) = \sum_i |x(s_i) - x(s_{i-1})| \approx \Delta \sum_i |dx(s_i)/ds|$$

TV approximates a scaled sum of the magnitude of jumps in x. Δ is a scale factor dependent on the grid size. Notice $TV(x(s)) \approx \Delta \|Lx\|_1$ so we solve

$$x(\lambda) = \arg \min \{ \|Ax - b\|_2^2 + \lambda^2 \|Lx\|_1 \}$$
Another approach: Total Variation Regularization

A more general regularization term $R(x)$ may be considered to better preserve properties of the solution x:

$$
x(\lambda) = \arg \min_x \{ \|Ax - b\|_W^2 + \lambda^2 R(x) \}
$$

Suppose R is total variation of x (general options are possible). The total variation for a function x defined on a discrete grid is

$$
TV(x(s)) = \sum_i |x(s_i) - x(s_{i-1})| \approx \Delta \sum_i |dx(s_i)/ds|
$$

TV approximates a scaled sum of the magnitude of jumps in x. Δ is a scale factor dependent on the grid size. Notice $TV(x(s)) \approx \Delta \|Lx\|_1$ so we solve

$$
x(\lambda) = \arg \min_x \{ \|Ax - b\|_2^2 + \lambda^2 \|Lx\|_1 \}$$
Another approach: Total Variation Regularization

A more general regularization term $R(x)$ may be considered to better preserve properties of the solution x:

$$x(\lambda) = \arg \min_x \{ \|Ax - b\|_W^2 + \lambda^2 R(x) \}$$

Suppose R is total variation of x (general options are possible). The total variation for a function x defined on a discrete grid is

$$TV(x(s)) = \sum_i |x(s_i) - x(s_{i-1})| \approx \Delta \sum_i |dx(s_i)/ds|$$

TV approximates a scaled sum of the magnitude of jumps in x. Δ is a scale factor dependent on the grid size. Notice $TV(x(s)) \approx \Delta \|Lx\|_1$ so we solve

$$x(\lambda) = \arg \min_x \{ \|Ax - b\|_2^2 + \lambda^2 \|Lx\|_1 \}$$
Newton’s Method Use $|x| \approx \sqrt{|x|^2 + \beta^2} = \psi(|x|), 1 \gg \beta > 0$.

$$TV(x) \approx \Delta \sum \sqrt{|\nabla x|^2 + \beta^2} = \sqrt{||\nabla x||^2 + \beta^2}$$
$$\approx \frac{1}{2} \sum_{i=2}^{n} \psi(|l_i^T x|^2), \quad l_i \text{ row of } L.$$

Requires update of gradient and Hessian of the functional each step - costly for large n.

$$\nabla R(x) = L^T \text{diag}(\psi'(x)) L x = \Psi(x)x, \quad \Psi(x) = L^T \text{diag}(\psi'(x)) L$$
$$\nabla^2 R(x) = \Psi(x) + \Psi'(x)x, \quad \Psi'(x)x = L^T \text{diag}(2(Lx)^2 \psi''(x)) L.$$
Newton's Method Use $|x| \approx \sqrt{|x|^2 + \beta^2} = \psi(|x|)$, $1 \gg \beta > 0$.

$$TV(x) \approx \Delta \sum \sqrt{|\nabla x|^2 + \beta^2} = \sqrt{||\nabla x||^2 + \beta^2}$$

$$\approx \frac{1}{2} \sum_{i=2}^{n} \psi(|l_i^T x|^2), \quad l_i \text{ row of } L.$$

Requires update of gradient and Hessian of the functional each step - costly for large n.

$$\nabla R(x) = L^T \text{diag}(\psi'(x))Lx = \Psi(x)x, \quad \Psi(x) = L^T \text{diag}(\psi'(x))L$$

$$\nabla^2 R(x) = \Psi(x) + \Psi'(x)x, \quad \Psi'(x)x = L^T \text{diag}(2(Lx)^2\psi''(x))L.$$
Iteratively Reweighted Norm (Rodriguez and Wohlberg 2007 and 2009)

Goal: replace l_1 norm by quadratic l_2 and iterate.

Consider approximations for $Lx \approx d$.

\[
R(x) = \| \sqrt{\|\nabla x\|^2} \|_q^q = \sum_l (\|d_l\|_2)^q \quad 0 < q \leq 2
\]

Let W be a diagonal matrix with entries $W_{ll} = (\|d_l\|_2)^2(q-2)$, $R(x) \approx \|W^{1/2}Lx\|^2_2$,

and update each iteration

\[
R^{(k)}(x) = \|Lx\|_{W^{(k)}}^2
\]

To avoid singularity again introduce scaling parameter:

\[
W_{ll}^k = \tau(\|d_l^k\|_2^2)(\|d_l^k\|_2^2), \quad \tau(z) = 1, \quad z \geq \epsilon \quad \tau(z) = 0, \quad z < \epsilon.
\]
Iteratively Reweighted Norm (Rodriguez and Wohlberg 2007 and 2009)

Goal: replace l_1 norm by quadratic l_2 and iterate.

Consider approximations for $Lx \approx d$.

$$ R(x) = \| \sqrt{\| \nabla x \|^2} \|^q = \sum_l (\| d_l \|_2^2)^q \quad 0 < q \leq 2 $$

Let W be a diagonal matrix with entries $W_{ll} = (\| d_l \|_2^2)^{(q-2)}$, $W(x) \approx \| W^{1/2} Lx \|_2^2$,

and update each iteration

$$ R^{(k)}(x) = \| Lx \|_{W^{(k)}}^2 $$

To avoid singularity again introduce scaling parameter:

$$ W_{ll}^k = \tau(\| d_l^k \|_2^2)(\| d_l^k \|_2^2), \quad \tau(z) = 1, \quad z \geq \epsilon \quad \tau(z) = 0, \quad z < \epsilon. $$
Iteratively Reweighted Norm (Rodriguez and Wohlberg 2007 and 2009)

Goal: replace l_1 norm by quadratic l_2 and iterate.

Consider approximations for $Lx \approx d$.

$$R(x) = \| \sqrt{\| \nabla x \|^2} \|_q^q = \sum_l (\| d_l \|_2)^q \quad 0 < q \leq 2$$

Let W be a diagonal matrix with entries

$$W_{ll} = (\| d_l \|_2^2)^{(q-2)}$$

and update each iteration

$$R^{(k)}(x) = \| Lx \|_{W^{(k)}}^2$$

To avoid singularity again introduce scaling parameter:

$$W^{(k)}_{ll} = \tau(\| d_l^{(k)} \|_2^2)(\| d_l^{(k)} \|_2^2), \quad \tau(z) = 1, \quad z \geq \epsilon \quad \tau(z) = 0, \quad z < \epsilon.$$
Iteratively Reweighted Norm (Rodriguez and Wohlberg 2007 and 2009)

Goal: replace l_1 norm by quadratic l_2 and iterate.

Consider approximations for $Lx \approx d$.

$$R(x) = \| \sqrt{\| \nabla x \|_2^2} \|_q^q = \sum_l (\|d_l\|_2^2)^q \quad 0 < q \leq 2$$

Let W be a diagonal matrix with entries $W_{ll} = (\|d_l\|_2^2)^{(q-2)}$,

$$R(x) \approx \|W^{1/2} Lx\|_2^2,$$

and update each iteration

$$R^{(k)}(x) = \|Lx\|_{W^{(k)}}^2$$

To avoid singularity again introduce scaling parameter:

$$W_{ll}^k = \tau(\|d_l^k\|_2^2)(\|d_l^k\|_2^2), \quad \tau(z) = 1, \quad z \geq \epsilon \quad \tau(z) = 0, \quad z < \epsilon.$$
The main reference is here with software:

Many developments have been made since that time:

Above reference discusses relationship of SB to Augmented Lagrangian and Peaceman-Rachford alternating direction
For $R(x) = Lx$ for $L \in \mathcal{R}^{q \times n}$: Introduce $d = Lx$

Rewrite $R(x) = \frac{\lambda^2}{2} \| d - Lx \|_2^2 + \mu \| d \|_1$ and restate as

$$(x, d) = \arg \min_{x, d} \left\{ \frac{1}{2} \| Ax - b \|_2^2 + \frac{\lambda^2}{2} \| d - Lx \|_2^2 + \mu \| d \|_1 \right\}$$

Solve using an alternating minimization which separates minimization for d from x

Various versions of the iteration can be defined.

$$S1 : x^{(k+1)} = \arg \min_x \left\{ \frac{1}{2} \| Ax - b \|_2^2 + \frac{\lambda^2}{2} \| Lx - (d^{(k+1)} - g^{(k)}) \|_2^2 \right\}$$ \hspace{1cm} (1)

$$S2 : d^{(k+1)} = \arg \min_d \left\{ \frac{\lambda^2}{2} \| d - (Lx^{(k+1)} + g^{(k)}) \|_2^2 + \mu \| d \|_1 \right\}$$ \hspace{1cm} (2)

$$S3 : g^{(k+1)} = g^{(k)} + Lx^{(k+1)} - d^{(k+1)}.$$ \hspace{1cm} (3)
For $R(x) = Lx$ for $L \in \mathcal{R}^{q \times n}$: Introduce $d = Lx$

Rewrite $R(x) = \frac{\lambda^2}{2} \|d - Lx\|_2^2 + \mu \|d\|_1$ and restate as

$$(x, d) = \arg \min_{x, d} \left\{ \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda^2}{2} \|d - Lx\|_2^2 + \mu \|d\|_1 \right\}$$

Solve using an alternating minimization which separates minimization for d from x

Various versions of the iteration can be defined.

S1: $x^{(k+1)} = \arg \min_x \left\{ \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda^2}{2} \|Lx - (d^{(k+1)} - g^{(k)})\|_2^2 \right\}$ \hspace{1cm} (1)

S2: $d^{(k+1)} = \arg \min_d \left\{ \frac{\lambda^2}{2} \|d - (Lx^{(k+1)} + g^{(k)})\|_2^2 + \mu \|d\|_1 \right\}$ \hspace{1cm} (2)

S3: $g^{(k+1)} = g^{(k)} + Lx^{(k+1)} - d^{(k+1)}$. \hspace{1cm} (3)
SB The Main Idea of GO Paper: for Regularization $R(x)$

For $R(x) = Lx$ for $L \in \mathbb{R}^{q \times n}$: Introduce $d = Lx$

Rewrite $R(x) = \frac{\lambda^2}{2} \|d - Lx\|_2^2 + \mu \|d\|_1$ and restate as

$$(x, d) = \underset{x,d}{\arg\min}\left\{\frac{1}{2}\|Ax - b\|_2^2 + \frac{\lambda^2}{2}\|d - Lx\|_2^2 + \mu \|d\|_1\right\}$$

Solve using an alternating minimization which separates minimization for d from x

Various versions of the iteration can be defined.

S1: $x^{(k+1)} = \underset{x}{\arg\min}\left\{\frac{1}{2}\|Ax - b\|_2^2 + \frac{\lambda^2}{2}\|Lx - (d^{(k+1)} - g^{(k)})\|_2^2\right\}$ \hspace{1cm} (1)

S2: $d^{(k+1)} = \underset{d}{\arg\min}\left\{\frac{\lambda^2}{2}\|d - (Lx^{(k+1)} + g^{(k)})\|_2^2 + \mu \|d\|_1\right\}$ \hspace{1cm} (2)

S3: $g^{(k+1)} = g^{(k)} + Lx^{(k+1)} - d^{(k+1)}$. \hspace{1cm} (3)
For $R(x) = Lx$ for $L \in \mathcal{R}^{q \times n}$: Introduce $d = Lx$

Rewrite $R(x) = \frac{\lambda^2}{2} \|d - Lx\|_2^2 + \mu \|d\|_1$ and restate as

$$ (x, d) = \arg \min_{x, d} \{ \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda^2}{2} \|d - Lx\|_2^2 + \mu \|d\|_1 \} $$

Solve using an alternating minimization which separates minimization for d from x

Various versions of the iteration can be defined.

S1: $x^{(k+1)} = \arg \min_x \{ \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda^2}{2} \|Lx - (d^{(k+1)} - g^{(k)})\|_2^2 \}$

S2: $d^{(k+1)} = \arg \min_d \{ \frac{\lambda^2}{2} \|d - (Lx^{(k+1)} + g^{(k)})\|_2^2 + \mu \|d\|_1 \}$

S3: $g^{(k+1)} = g^{(k)} + Lx^{(k+1)} - d^{(k+1)}$.

SB Unconstrained algorithm:

Update for x:

$$ x = \arg \min_x \left\{ \frac{1}{2} \| Ax - b \|_2^2 + \frac{\lambda^2}{2} \| Lx - h \|_2^2 \right\}, \quad h = d - g $$

Standard least squares update using a Tikhonov regularizer. Still uses the same basis but perturbed weights through h

$$ x^{(k+1)} = \sum_{i=1}^{p} \frac{\nu_i u_i^T b + \lambda^2 \mu_i v_i^T h^{(k)}}{\nu_i^2 + \lambda^2 \mu_i^2} \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i $$

Update for d:

$$ d = \arg \min_d \left\{ \mu \| d \|_1 + \frac{\lambda^2}{2} \| d - c \|_2^2 \right\}, \quad c = Lx + g $$

$$ = \arg \min_d \left\{ \| d \|_1 + \frac{\gamma}{2} \| d - c \|_2^2 \right\}, \quad \gamma = \frac{\lambda^2}{\mu} $$

This is achieved using *soft* thresholding.
SB Unconstrained algorithm:

Update for x:

$$ x = \text{arg min}_x \left\{ \frac{1}{2} \|Ax - b\|_2^2 + \frac{\lambda^2}{2} \|Lx - h\|_2^2 \right\}, \quad h = d - g $$

Standard least squares update using a Tikhonov regularizer. Still uses the same basis but perturbed weights through h

$$ x^{(k+1)} = \sum_{i=1}^{p} \frac{\nu_i u_i^T b + \lambda^2 \mu_i v_i^T h^{(k)}}{\nu_i^2 + \lambda^2 \mu_i^2} \tilde{z}_i + \sum_{i=p+1}^{n} (u_i^T b) \tilde{z}_i $$

Update for d:

$$ d = \text{arg min}_d \left\{ \mu \|d\|_1 + \frac{\lambda^2}{2} \|d - c\|_2^2 \right\}, \quad c = Lx + g $$

$$ = \text{arg min}_d \left\{ \|d\|_1 + \frac{\gamma}{2} \|d - c\|_2^2 \right\}, \quad \gamma = \frac{\lambda^2}{\mu} $$

This is achieved using soft thresholding.
Thresholding for d

If d has q components $(d)_i$ componentwise solution:

$$(d)_i = \frac{c_i}{|c_i|} \max(|c_i| - \frac{1}{\gamma}, 0) \quad i = 1 : q$$

If d is two dimensional it contains components d_x and d_y. Threshold is applied for each component of $(d_x^T, d_y^T)^T$: we use

$$\|d\|_1 = \|d_x\|_1 + \|d_y\|_1$$

The TV norm for the two dimensional case can be written

$$\|d\|_{TV} = \left(\sum_{l=1}^{n} \|d_l\|_2 \right) \quad q = 2(n - 1)$$

Intrinsically TV is still local.

$$(d_{TV})_i = \frac{c_i}{\|c_i\|_2} \max(\|c_i\|_2 - \frac{1}{\gamma}, 0) \quad i = 1 : n$$
Illustrating Total Variation Solutions for noise level .1 in the data

Figure: $\lambda = .1, \gamma = .5$: We see that final h is too large relative to b
Illustrating Total Variation Solutions for noise level 0.1 in the data

Figure: $\lambda = 1, \gamma = 0.5$: Final h balances b
Illustrating Total Variation Solutions for noise level .1 in the data

Figure: $\lambda = 10, \gamma = .5$: b dominates and the solution is over smooth
Illustrating Total Variation Solutions for noise level .1 in the data: The impact of γ

Figure: $\lambda = .1$, On the left $\gamma = .5$ and on the right $\gamma = 5$
Advantage of TV is clear for constant components. But solutions still depend on parameters. We need to find both λ and μ. We may use standard parameter estimation to find λ - for updating x. We can use reweighting for μ - for updating d.

Observations
Advantage of TV is clear for constant components. But solutions still depend on parameters. We need to find both λ and μ. We may use standard parameter estimation to find λ - for updating x. We can use reweighting for μ - for updating d.
Advantage of TV is clear for constant components. But solutions still depend on parameters. We need to find both λ and μ. We may use standard parameter estimation to find λ - for updating x. We can use reweighting for μ - for updating d.
Advantage of TV is clear for constant components.
But solutions still depend on parameters
We need to find both λ and μ
We may use standard parameter estimation to find λ - for updating x
We can use reweighting for μ - for updating d
Advantage of TV is clear for constant components.
But solutions still depend on parameters.
We need to find both λ and μ.
We may use standard parameter estimation to find λ - for updating x.
We can use reweighting for μ - for updating d.
Consideration of the Update for x

Lx update - examine update

$$x = \arg \min_x \left\{ \frac{1}{2} \| Ax - b \|_2^2 + \frac{\lambda^2}{2} \| Lx - h \|_2^2 \right\}, \quad h = d - g$$

Standard form Introduce $\bar{A} = AL^\#$ where $L^\#$ is the oblique pseudoinverse of L,

Shift $y = Lx - h$ and solve with $b^{(k+1)} = \bar{b} - \bar{A}h^{(k)}$

$$y^{(k+1)} = \arg \min_y \left\{ \frac{1}{2} \| \bar{A}y - b^{(k+1)} \|_2^2 + \frac{\lambda^2}{2} \| y \|_2^2 \right\}$$

Independence Updating does not require x

Final step $x = L^\#y^{(k+1)} + x_N$, $x_N = W(AW)^\dagger b$,

$\bar{b} = b - Ax_N$, W spans the null space of L

Parameter Choice Look at Picard condition for y and not x.
Exploiting the GSVD for analysis

\[x^{(1)} = \sum_{i=1}^{p} \frac{\phi_i}{\nu_i} u_i^T b z_i + \sum_{i=p+1}^{n} (u_i^T b) z_i, \]

\[x^{(k+1)} = \sum_{i=1}^{p} \left(\frac{\phi_i}{\nu_i} u_i^T b + \frac{1 - \phi_i}{\mu_i} v_i^T h^{(k)} \right) z_i + \sum_{i=p+1}^{n} (u_i^T b) z_i \] \hspace{1cm} (4)

\[L x^{(k+1)} = \sum_{i=1}^{p} \left(\frac{\phi_i \mu_i}{\nu_i} (u_i^T b) + (1 - \phi_i) v_i^T h^{(k)} \right) v_i. \] \hspace{1cm} (5)

Notice in this case that we must also control the coefficients for terms with h. Relevant coefficients

\[\frac{\phi_i}{\nu_i} \hspace{1cm} \frac{\phi_i \mu_i}{\nu_i} \hspace{1cm} \frac{(1 - \phi_i)}{\mu_i} \hspace{1cm} (1 - \phi_i) \]
GSVD coefficients for the Problem

Figure: $\lambda = .001$

Of course the coefficients are independent of the data.
GSVD coefficients for the Problem

Figure: $\lambda = .01$

Of course the coefficients are independent of the data
GSVD coefficients for the Problem

Figure: $\lambda = 1$

Of course the coefficients are independent of the data
GSVD coefficients for the Problem

Figure: $\lambda = 1$

Of course the coefficients are independent of the data
GSVD coefficients for the Problem

Of course the coefficients are independent of the data
Picard Condition using GSVD for noise level ν.

$\lambda = 0.001$, $\gamma = 0.5$, noise level $= 0.1$, steps $= 100$

But h changes with the iteration
Picard Condition using GSVD for noise level 0.1

But h changes with the iteration
Picard Condition using GSVD for noise level $\lambda = 0.1, \gamma = 0.5$ noise level = 0.1 steps = 100

But h changes with the iteration
Picard Condition using GSVD for noise level 0.1

But h changes with the iteration
For regularization in general the choice of λ depends on the right hand side vector.

In this case h changes each step.

It is clear that we should update λ each step.

We use standard approach - Unbiased Predictive Risk Estimation and L-Curve.

We also use iteratively reweighed norm approach for the d update.
Figure: $\gamma = 200$ Low noise. Without updating λ left and updated right. SB UPRE uses the estimated λ from UPRE for all SB steps. Update SB, updates λ each step. SB IRN updates and iteratively reweights $\|d\|_1$.
Figure: $\gamma = 200$ High noise. Without updating λ left and updated right. SB UPRE uses the estimated λ from UPRE for all SB steps. Update SB, updates λ each step. SB IRN updates and iteratively reweights $\|d\|_1$.
Example Solution: 2D - similar blurring operator

Figure: $\gamma = 5$

SB with updated λ is useful
Example Solution: 2D - similar blurring operator

Figure: $\gamma = 5$

SB with updated λ is useful
Further Observations and Future Work

Results demonstrate basic analysis of problem is worthwhile

Parameter estimation from basic LS can be used to find appropriate parameter

Questions that may be raised - cost of finding optimal λ

 ★ Overhead of optimal λ for the first step - reasonable

 ★ Overhead of subsequent steps - UPRE requires matrix trace - but for deblurring we can use results about spectrum of Toeplitz matrices

Future Implement using the Toeplitz operators

Extensions Implement using statistical estimation using χ^2 approach. Takes account of covariance on h

Convergence testing is based on h.
See me for extensive references to literature

THANK YOU