Skip to main content.
 
Rosemary Renaut
 
Navigation:

Home

next up previous
Next: Other Reports and Conference Up: cv Previous: cv

Journal Publications and Refereed Conference Proceedings:

  1. A. Iserles and R.A. Renaut (Williamson) (1984), Stability and accuracy of semi-discretised finite difference methods, IMA J. Num. Anal 4, 289-307.
  2. R.A. Renaut (Williamson)(1984), Pade approximations in the numerical solution of hyperbolic equations, in Pade Approximation and its Applications, Bad Honeff 1983, H. Werner and H.J. Bunger (eds), Springer Verlag, New York.
  3. J. Petersen and R.A. Renaut (1988), Synthetic 2D-Seismic Wave Propagation using a Hypercube Parallel Computer, Geophysical Transactions of Hungary 34, No. 4, 309-332.
  4. R.A. Renaut and J. Petersen(1988), Evaluation of a Vector Hypercube for Seismic Modelling. Presented at the 3rd Conference on Hypercube Concurrent-Computers and Applications. January 1988, Pasadena. In Conference proceedings, 1187-1192. Also BSC Report 88/8, Bergen Scientific Centre IBM, Bergen, Norway.
  5. R.A. Renaut-Williamson (1989), Semi-discretisations of $u_{tt}=u_{xx}$ and rational approximations to ^2$, SIAM J. Num. Anal. 26, 2, 320-337.
  6. R.A. Renaut-Williamson (1989), Full discretisations of $u_{tt}=u_{xx}$ and rational approximations to $\cosh\mu z$, SIAM J. Num. Anal. 26, 2, 338-347.
  7. R.A. Renaut and J. Petersen (1989),Stability of Wide-Angle Absorbing Boundary Conditions for the Wave Equation, Geophysics, 54, 9, 1153-1163. Also BSC Report 88/12, Bergen, Norway 1988.
  8. R.A. Renaut (1990), Two-step Runge Kutta and Hyperbolic Partial Differential Equations, Math. Comp. 55, 192, 563-579.
  9. R.A. Renaut and M.L. Woo (1990), Parallel Pseudospectral Methods for the Solution of the Wave Equation, Frontiers in Applied Math. Series, Wave Propagation and Inversion, 124-134.
  10. R.A. Renaut and M.L. Woo(1992), Parallel Power-of-Two Fast Fourier Transforms: Ordered and Unordered, Proceedings Edinburgh Workshop on Parallel Computation.
  11. R.A. Renaut (1990), Stability of One-way Wave Equations as Absorbing Boundary Conditions for the Wave Equation, SIAM Frontiers in Applied Math. Series, Wave Propagation and Inversion, 96-107.
  12. Z. Jackiewicz, R. Renaut and A. Feldstein (1991), Implicit 2-step Runge-Kutta Methods, SIAM J. Num. Anal. 28, 4, 1165-1182.
  13. M.L. Woo and R.A. Renaut (1991), Parallel Power-of-Two FFTs on Hypercubes, pdf,Supercomputing '91, 754-763.
  14. R.A. Renaut (1992), Absorbing Boundary Conditions, Difference Operators and Stability, J. Comp. Phys. 102, 236-251.
  15. R.A. Renaut and J.H. Smit (1992), Order Stars and the Maximal Accuracy of Stable Difference Schemes for the Wave Equation, Quaestiones Mathematicae, 15, 3, 307-323.
  16. P.A. Tirkas, C. A. Balanis, C.A. and R. A. Renaut (1992), Higher-order absorbing boundary conditions in FDTD method In Antennas and Propagation Society International Symposium, 1992. AP-S. 1992 Digest. Held in Conjuction with: URSI Radio Science Meeting and Nuclear EMP Meeting., IEEE Digital Object Identifier: 10.1109/APS.1992.221878 Page(s): 552 - 555 vol.1
  17. P. Tirkas, C. Balanis and R.A. Renaut (1993), Higher-Order Absorbing Boundary Conditions in the Finite Difference Time Domain Method IEEE Trans. on Antennas and Propagation, 40, 10, 1215-1222.
  18. R.A. Renaut(1993),Absorbing Boundary Conditions for Acoustic and Elastic Waves,ps pdf In Numerical Methods for Fluid Dynamics, eds. M.J.Baines and K.W. Morton, 491-498.
  19. M.L. Woo and R.A. Renaut (1994), Parallel Radix-2 and Mixed-Radix (4.2) FFTs of Distance 1 and 2: Unordered Transforms, pdf, Proceedings of the 1994 ACM Symposium on Applied Computing, eds. Deaton, E. , et. al. 504-509.
  20. R. A. Renaut , H. D. Mittelmann and Qing He(1994), Parallel Multisplittings: Overview and Extensions, ps, pdfProceedings of the Fifth SIAM Conference on Applied Linear Algebra, ed. J. Lewis, 34-38.
  21. R. Renaut, Qing He and Fwu-Shing Horng(1995), Parallel Multisplittings for Minimization, High Performance Computing 1995 Grand Challenges in Computer Simulation, ed. A. Tentner, Society for Computer Simulation, 317-322.
  22. Z. Jackiewicz, R.A. Renaut and M.Zennaro (1995), Explicit Two-Step Runge-Kutta, Apl. Mat, 40, 6, 433-456.
  23. R. Jeltsch, R.A. Renaut and J.H. Smit(1995), Maximal Accuracy of Stable Difference Schemes for the Wave Equation, ps, pdf BIT 35, 1, 83-115, also ETH Research Report # 93-07,Seminar für Angewandte Mathematik, Zürich.
  24. R. Renaut and H. Mittelmann(1995), Parallel Multisplitting for Optimisation,pspdf Journal Parallel Algorithms and Applications, 7, 17-27.
  25. R. Jeltsch, R.A. Renaut and J.H. Smit(1995), On the Courant-Friedrichs-Lewy Condition Equipped with Order for Hyperbolic Differential Equations,pspdf Hyperbolic Problems - Theory, Numerics, Applications,Proceedings of the Fifth International Conference On Hyperbolic Problems: Theory, Numerics, Applications , Editors: J. Glimm, M.J. Graham, J.W. Grove and B.J. Plohr, World Scientific Publishing Co Ltd. (Singapore), 30-42.
  26. K. Burrage, Z. Jackiewicz and R.A. Renaut, (1996), The Performance of Preconditioned Waveform Relaxation Techniques for Pseudospectral Methods. Numerical Methods for Partial Differential Equations, ps12, 245-263.
  27. R. Renaut and J. Fröhlich (1996), A Pseudospectral Chebychev method for the 2D wave Equation with Domain Stretching and Absorbing Boundary Conditions, J. Comput. Physics, 124, 324-336.
  28. K. Burrage, Z. Jackiewicz, S.P. Norsett and R.A. Renaut (1996), Preconditioning Waveform Relaxation Iterations for Differential Systems.ps BIT 36, 1, 54-76.
  29. R.A. Renaut and J.S. Parent (1996), Rational Approximation to $1/\sqrt{1-s^2}$, One-Way Wave Equations and Absorbing Boundary Conditions, Journal Computational and Applied Mathematics,72, 245-259.
  30. V. L. Wells and R.A. Renaut (1996), Computing Aerodynamically Generated Noise, Annual Review of Fluid Mechanics, 29, 161-199.
  31. R. A. Renaut (1997), Absorbing Boundary Conditions,ps , pdf Encyclopaedia of Mathematics Supplement Volume 1, Editor Dr. M. Hazewinkel, 9-10, Kluwer Academic Publishers, The Netherlands.
  32. R.A. Renaut (1997) , Stability of a Chebyshev Pseudospectral Solution of the Wave Equation with Absorbing boundaries, J. Comp. Appl. Math. 87, 243-259.
  33. R.A. Renaut and Yi Su (1997), Evaluation of Chebychev Pseudospectral Methods for Third Order Differential Equations. Numerical Algorithms, 16, 255-281. Electronic Version
  34. R.A. Renaut (1998), A Parallel Multisplitting Solution of The Least Squares Problem, Numerical Linear Algebra with Applications, 5, 1, 11-31.
  35. R. Jeltsch, R.A. Renaut and J.H. Smit (1998), An Accuracy Barrier for Stable Three-Time Level Difference Schemes for Hyperbolic Equations,ps ETH Research Report # 95-01, Seminar für Angewandte Mathematik, Zürich. IMA J. Numerical Analysis, 18, 3, 445-484.
  36. J. L. Mead and R. A. Renaut,(1998) High Order Methods for Problems in Computational Aeroacoustics, Mathematical and Numerical Aspects of Wave Propagation, ed. J.A. DeSanto, Proceedings of the Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation, 597-599.
  37. Z. Jackiewicz, J. L. Mead and R. A. Renaut,(1998) Absorbing Boundary Conditions for the Acoustic Wave Equation, Mathematical and Numerical Aspects of Wave Propagation, ed. J.A. DeSanto, Proceedings of the Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation, 635-637.
  38. X. Ding and R.A. Renaut(1998), Convergence acceleration of preconditioned indefinite systems for second order elliptic boundary value problems,ps, pdf Iterative Methods in Scientific Computation, J. Wang, M. B. Allen, B. Chen, T. Mathew (eds.), 1998, IMACS Series in Computational and Applied Mathematics, 4, 369-374.
  39. A. Frommer and R. A. Renaut(1999), Parallel Space Decompostion for Minimization of Nonlinear Functionals,ps , pdfParallel Numerical Computations with Applications, ed. T. Yang, Kluwer International Series in Engineering and Computer Science, 53-61.
  40. J. L. Mead and R. A. Renaut,(1999) Optimal Runge-Kutta Methods for First Order Pseudospectral Operators, J. Comp. Phys., 152, 404-419.
  41. A. Frommer and R. A. Renaut(1999), A Unified Approach to Parallel Space Decomposition Methods, JCAM, 110, 205-233.
  42. Z. Jackiewicz and R. A. Renaut(2000), Diagonally Implicit Multistage Methods for Pseudospectral Solutions of the Wave Equation, Applied Numerical Methods, 34, 219-229.
  43. C. C. Chen, R. A. Renaut and K. Chen(2000), Total Least Squares Image Reconstruction for Positron Emission Tomography, 2000 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS'00, Volume I, 403-407. CSREA Press.
  44. C. Negoita, R. A. Renaut and K. Chen(2000),Determination of individual cerebral glucose uptake paramters in PET Alzheimer studies utilizing non-invasive acquisition procedures, 2000 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS'00, Volume I, 369-375, CSREA Press.
  45. J. Mead, R.A. Renaut and B. Welfert,(2001), Stability of a Pivoting Strategy for Parallel Gaussian Elimination, Online version,BIT, 41, 3, 633-639.
  46. Z. Jackiewicz and R. A. Renaut, (2002) A note on stability of pseudospectral methods for wave propagation, JCAM, 143, 127-139.
  47. H. Guo and R.A. Renaut(2001), A Regularized Total Least Squares Algorithm, Proceedings of the Third International workshop on TLS and Errors-in-Variables Modeling, Leuven, 2001, eds.Sabine Van Huffel and Philippe Lemmerling. Kluwer,pp 57-66.
  48. J. L. Mead and R. A. Renaut,(2002) Accuracy, Resolution and Stability Properties of a Modified Chebyshev Method, SIAM Journal Scientific and Statistical Computing,24, 1, 143-160.
  49. S. V. Georgapolous, C. A. Balanis, and R. A. Renaut, (2000) Pseudospectral methods versus FDTD , 2000 Antennas and Propagation Society International Symposium, IEEE , 3, , 1506 - 1509. doi: 10.1109/APS.2000.874494
  50. S. V. Georgapolous, R. A. Renaut, C. A. Balanis, and C. R. Birtcher, (2001) A Hybrid Fourth-Order FDTD Utlizing a Second-Order Subdgrid, IEEE Microwave and Wireless Components, 11, 11, 462-464.
  51. S. V. Georgapolous, C. R. Birtcher, C. A. Balanis, and R. A. Renaut, (2002)
    Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration: part I: Theory, IEEE Antennas and Propagation Magazine, 44, 1, 134-142, February 2002.
  52. S. V. Georgapolous, C. R. Birtcher, C. A. Balanis, and R. A. Renaut, (2002)
    Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration: part II: Applications, IEEE Antennas and Propagation Magazine, 44, 2, 92-101, April 2002.
  53. S. V. Georgapolous, C. R. Birtcher, C. Balanis, R. A. Renaut, and A. Panaretos, (2002)
    HIRF penetration and Coupling Analysis for Fuselage Models Using a Hybrid Subgrid FDTD(2,2)/FDTD(2,4) Method, 2002 IEEE Antennas and Propagation Society International Symposium, 690-693.
  54. S. V. Georgapolous, R. Renaut, C. Balanis, C. R. Birtcher, and A. Panaretos, (2002)
    A Hybrid Method of FDTD(2,4) and Subgrid FDTD(2,2) for Modeling of Coupling, 2002 IEEE Antennas and Propagation Society International Symposium, 694-698.
  55. Rosemary Renaut and Ulrich Ruede, Guest Editors, Special Issue: Selected Papers from the Workshop On education in Cmputational Sciences held at the International Conference on Computational Sciences, Amsterdam, 2002, Future Generation Computer Systems, 19, 2003, 1265--1390.
  56. H. Guo and R. A. Renaut (2004) Estimation of ^T f(A){\bf v}$ for large-scale unsymmetric matricesNumerical Linear Algebra and its Applications,11,75-89.
  57. S. V. Georgapolous, C. R. Birtcher, C. A. Balanis, and R. A. Renaut,(2003) HIRF Penetration and PED Coupling Analysis for Scaled Fueslage Models Using a Hybrid Subgrid FDTD(2,2)/FDTD(2,4) Method, IEEE Trans. on Electromagnetic Compatability, 45, 2, 293-305
  58. Hongbin Guo, Rosemary Renaut, Kewei Chen and Eric Reiman(2003), Clustering Huge Data sets for Parametric PET imaging, Biosystems, 71, 1-2, 81-92.
  59. Richard Archibald, Anne Gelb, Kewei Chen and Rosemary A Renaut(2003), Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method, NeuroImage, 20, 1, 489-502.
  60. Hongbin Guo, Rosemary Renaut and Kewei Chen, Clustering for three dimensional Kinetic PET data. Refereed Conference Proceedings, IEEE International Conference on Data Mining, Clustering Large Data Sets, Workshop Notes, 43-48, Melbourne Florida, 2003.
  61. Rosemary A. Renaut and Hongbin Guo, Efficient Algorithms for Solution of Regularized Total Least Squares, 26, 2, 457--476,  SIAM J Matrix Analysis, 2005.
  62. Kewei Chen, Eric M. Reiman, Gene E. Alexander, Daniel Bandy, Rosemary A. Renaut, William R. Crum, Nick C. Fox, Martin N. Rossor, An Automated Algorithm for the Computation of Brain Volume Change from Sequential MRI's Using an Iterative Principal Component Analysis and Its Evaluation for the Assessment of Whole Brain Atrophy Rates in Patients with Probable Alzheimer's Disease, Neuroimage, 22,1, 134-143 , 2004.
  63. H. Guo and R. A. Renaut Parallel Variable Distribution for Total Least Squares,  Numerical Linear Algebra with Applications, 12, 859-876, 2005. .
  64. Cristina Negoita and Rosemary A Renaut, On the Convergence of the Generalized Linear Least Squares Algorithm, BIT,  45, 1, 137--158, 2005. , Additional Results
  65. W Stefan, E. Garnero and R. A. Renaut, Signal restoration through deconvolution applied to deep mantle seismic probes, Geophys. J. Int. 167, 1353-1362, 2006. Electronic Supplement
  66. H. Guo, R. A. Renaut and K. Chen, An Input Function Estimation Method for FDG-PET Human Brain Studies , Nuclear Medicine and Biology, 34, 5 pp. 483-492 doi:10.1016/j.nucmedbio.2007.03.008.
    Pub med Online Online
    Electronic Supplement
  67. A. Smirnova, R. A. Renaut and T. Khan, Convergence and Application of a Modified Iteratively Regularized Gauss-Newton Algorithm 2007 Inverse Problems 23 1547-1563 doi:10.1088/0266-5611/23/4/011.
  68. H. Guo and R. A. Renaut, A Structured Data Least Squares Algorithm and its Application in Digital Filtering .Recent Advances in Computational Sciences, Selected Papers from the International Workshop on Computational Sciences, Eds: Palle Jorgensen, Xiaoping Shen, Chi-Wang Shu ISBN: 981270700X Hardback World Scientific Publishing Co Pte Ltd.
  69. K. Chen, X.Chen, R. Renaut, GE. Alexander, D. Bandy, H. Guo and E. Reiman Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images, Physics in Medicine and Biology, 52 (2007) 7055-7071. doi:10.1088/0031-9155/52/23/019
  70. H. Nam, R. A. Renaut, K. Chen and H. Guo (2008), Improved inter-modality image registration using normalized mutual information with coarse-binned histograms Communications in Numerical Methods in Engineering, doi:10.1002/cnm.1176.
  71. J. Mead, R. A. Renaut (2009), A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems, Inverse Problems, 25 (2009) 025002. doi: 10.1088/0266-5611/25/2/025002
  72. H. Guo, R. A. Renaut, K. Chen and E. Reiman (2009), FDG-PET parametric imaging by total variation minimization, Computerized Medical Imaging and Graphics, 33, 4, 295-303 (2009) doi: 10.1016/j.compmedimag.2009.01.005
  73. A. Smirnova and R. A. Renaut (2009), A family of preconditioned iteratively regularized methods for nonlinear minimization, Journal of Inverse and Ill-posed Problems, 17, 4, 05–418, ISSN (Online) 1569-3945, ISSN (Print) 0928-0219, doi:10.1515/JIIP.2009.027, /June/2009.
  74. J. Mead, R. A. Renaut (2010), Least Squares problems with inequality constraints as quadratic constraints, Linear Algebra and its Applications, 432 (2010) 1936–1949. doi:10.1016/j.laa.2009.04.017.
  75. R. Renaut, I. Hnetynkova and J. Mead (2010), Regularization parameter estimation for large scale Tikhonov regularization using a priori information, Computational Statistics and Data Analysis, 54, 3430-3445, doi:10.1016/j.csda.2009.05.026
  76. W. Stefan, R. A. Renaut and A. Gelb (2010), Improved Total variation-type regularization using higher order edge detectors, SIAM J. Imaging Sciences, 3, 2, 232-251. doi:10.1137/080730251
  77. H. Guo, R. A. Renaut, K. Chen, and E. Reiman (2010), Reducing modeling error of graphical methods for estimating volume of distribution measurements in PIB-PET study. Mathematical Biosciences, 226, 134-146, doi:10.1016/j.mbs.2010.05.002
  78. A. Viswanathan, A. Gelb, D. Cochran and R. A. Renaut, (2010), On Reconstruction from Non-uniform Spectral Data. J. Scientific Computing, 45, 487-513, doi.10.1007/s10915-010-9364-3
  79. W. J. Chen, H. Guo, R. A. Renaut, and K. Chen (2010), A new SVM Model for classifying genetic data. Proceedings of the 2010 International Conference on Bioinformatics, Computational Biology, Genomics and Chemoinformatics (BCBGC-10), 54-60, ISBN= 978-1-60651-017-9, Orlando, Florida, USA, published by IRST. Mukesh Doble, William Loging, Zhirong Sun (Editors).
  80. H. Guo and R. A. Renaut, (2010) Revisiting Stopping Rules for Iterative Methods used in Emission Tomography. on line, Computerized Medical Imaging and Graphics. doi:10.1016/j.compmedimag.2010.11.011
  81. R. A. Renaut, Y. Lin, and H. Guo, (2012), Multisplitting for Regularized Least Squares with Krylov Subspace Recycling, Numerical Linear Algebra and its Applications, 19, 655-676, doi:10.1002/nla797.
  82. W. Stefan, A. Viswanathan, A. Gelb and R. A. Renaut, (2012) Sparsity Enforcing edge detection method for blurred and noisy Fourier data, J. Scientific Computing,50, 3, 536-556.
  83. W. Stefan, K. Chen, H. Guo, R. Renaut and S. Roudenko, (2012), Wavelet-based denoising of positron emission tomography scans, J. Scientific Computing, 50, 3, 665-677.
  84. R. A. Renaut, R.Baker, M. Horst, C. Johnson and D. Nasir, (2013), Stability and error analysis of the polarization estimation inverse problem for microbial fuel cells, Inverse Problems, 29, 045006 (24pp), doi:10.1088/0266-5611/29/4/045006.
  85. S. Vatankhah, V. E. Ardestani and R. A. Renaut, (2014), Automatic estimation of the regularization parameter in 2-D focusing gravity inversion: an application to the Safo manganese mine in northwest of Iran, Journal of Geophysics and Engineering, 11, 45001. Draft: Arxiv: arxiv.org/abs/1310.0068
  86. Q. Huang, R. Eubank and R. A. Renaut, (2014), Functional Partial Canonical Correlation, Electronic Access: Bernoulli.
  87. S. Vatankhah, R. A. Renaut and V. E. Ardestani, (2014), Regularization Parameter Estimation for Underdetermined problems by the $\chi^2$ principle with application to 2D focusing gravity inversion, Draft: Arxiv: arxiv.org/abs/1402.3365 Electronic Publication Inverse Problems
  88. J. Hansen, J. Hogue, G. Sander, R. A. Renaut, and S. C. Popat (2013), Non-negatively constrained least squares and parameter choice by the residual periodogram for the inversion of electrochemical impedance spectroscopy J. Comp. Appl. Mathematics, (2015), pp. 52-74, doi 10.1016/j.cam.2014.09.017, initial on line access Arxiv Supplementary Materials Supplementary Materials
  89. S. Vatankhah, V. E. Ardestani and R. A. Renaut, (2015), Application of the chi^2 principle and unbiased predictive risk estimator for determining the regularization parameter in 3D focusing gravity inversion, Geophysical J International, 200 (1): 265-277 doi: 10.1093/gji/ggu397. Draft: Arxiv: arxiv.org/abs/1408.0712
  90. R. A. Renaut M. Horst Y. Wang D. Cochran and J E Hansen (2016) Efficient Estimation of Regularization Parameters via Downsampling and the Singular Value Expansion. Arxiv: arxiv.org/abs/1311.0398 BIT: The final publication is available at Springer via BIT Numerical Mathematics, 57 (2), 499-529. http://dx.doi.org/DOI: 10.1007/s10543-016-0637-6
  91. R. A. Renaut, S. Vatankhah and V. E. Ardestani, (2016), Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted GCV for projected systems. SIAM J. Sci. Comput. 39-2 (2017), pp. B221-B243. http://epubs.siam.org/toc/sjoce3/39/2. DOI: 10.1137/15M1037925 Draft: Arxiv: arxiv.org/abs/1509.00096.
  92. S. Vatankhah and R. A. Renaut, (2017), Comment On: "Improving compact gravity inversion based on new weighting functions", by Mohammad Hossein Ghalehnoee, Abdolhamid Ansari and Ahmad Ghorbani, Geophysical Journal International, 211, 346?348. DOI: 10.1093/gji/ggx058
  93. S. Vatankhah, R. A. Renaut and V. E. Ardestani, (2017), 3-D Projected L1 inversion of gravity data. Geophysical Journal International 210 (3), 1882-1887 DOI: 10.1093/gji/ggx274. Draft: http://arxiv.org/abs/1601.00114
  94. S. Vatankhah, R. A. Renaut and V. E. Ardestani, (2018), A fast algorithm for regularized focused 3-D inversion of gravity data using the randomized SVD. Geophysics. https://doi.org/10.1190/geo2017-0386.1. Draft on arxiv: http://arxiv.org/abs/1706.06141
  95. S. Vatankhah, R. A. Renaut and V. E. Ardestani, (2018), Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition. Geophysical Journal International, Volume 213, Issue 1, 1 April 2018, Pages 695--705. https://doi.org/10.1093/gji/ggy014. Draft on arxiv: http://arxiv.org/abs/1709.08125
  96. S. Vatankhah and R. A. Renaut, (2018), Comment On: "Three-dimensional potential field data inversion with L0 quasinorm sparse constraints", by Zhaohai Meng Geophysical Prospecting, 2019, 67, 480--481. http://dx.doi.org/DOI: 10.1111/1365-2478.12734
  97. S. Vatankhah, V. E. Ardestani, S. S. Niri, R. A. Renaut and H. Kabirzadeh, (2018), IGUG: A MATLAB package for $3$D inversion of gravity data using graph theory, Draft on arxiv: http://arxiv.org/abs/1810.00252 Online April 1 2019. Computers and Geosciences, Volume 128, pages 19-29, July 2019
  98. R. A. Renaut,. A. W. Helmstetter and S. Vatankhah, (2018), Convergence of Regularization Parameters for Solutions Using the Filtered Truncated Singular Value Decomposition. Draft on arxiv: http://arxiv.org/abs/1809.00249 To Appear, BIT Numerical Mathematics, accepted May 4, 2019.

Submitted - In preparation Papers

  1. Saeed Vatankhah, Shuang Liu, Rosemary A. Renaut, Xiangyun Hu, and Jamaledin Baniamerian, (2019), Improving the use of the randomized singular value decomposition for the inversion of gravity and magnetic data, submitted, June 26, 2019, Draft on arxiv: http://arxiv.org/abs/1906.11221
  2. Subsections
    next up previous
    Next: Other Reports and Conference Up: CV Previous: CV
    Rosie Renaut November 28, 2015.