1. First kind Fredholm integral equation provides a linear model for inverse problem analysis.

2. The SVE provides a means to analyse stability and existence of solutions.

3. Picard condition is necessary for existence of solution which is square integrable.

4. Right hand side \(g \) must be sufficiently smooth as measured by its SVE coefficients.

5. For more general inverse problems, e.g. Laplace transform, the operator is not compact, but a similar analysis for continuum of singular values can be applied.

6. Most cases we cannot calculate the SVE.
Solution with the SVD - defined as for the SVE
Discretizing the Integral
Using the SVD for the SVE
Spectral Filtering
Errors Rosemary Renaut
November 2, 2011
Consider general overdetermined discrete problem

\[Ax = b, \quad A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^{m}, \quad x \in \mathbb{R}^{n}, \quad m \geq n. \]

Thin singular value decomposition (SVD) of rectangular \(A \) is

\[A = U \Sigma V^T = \sum_{i=1}^{n} u_i \sigma_i v_i^T, \quad \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n). \]

\(U \) of size \(m \times n \), \(V \) and \(\Sigma \) square of size \(n \):

\[U = [u_1, \ldots, u_n], \quad V = [v_1, \ldots, v_n], \quad \sigma_1 \geq \sigma_2 \geq \sigma_n \geq 0 \]

Orthonormal columns in \(U \) and \(V \), left and right singular vectors for \(A \)

\[u_i^T u_j = v_i^T v_j = \delta(i - j) \rightarrow U^T U = V^T V = V V^T = I_n. \]

If \(A \) has full column rank \(\sigma_n > 0 \)

\[A^\dagger = V \Sigma^{-1} U^T = A^{-1}, \quad m = n. \]
Moore Penrose Generalized Inverse

1. \(AA^\dagger A = A \)
2. \(A^\dagger AA^\dagger = A^\dagger \)
3. \((AA^\dagger)^* = AA^\dagger \)
4. \((A^\dagger A)^* = A^\dagger A \)
Deriving the Solution: Similarly to SVE

1. We can write \(\mathbf{x} = \mathbf{V} \mathbf{V}^T \mathbf{x} = \sum_{i=1}^{n} (\mathbf{v}_i^T \mathbf{x}) \mathbf{v}_i \) and

 \[\mathbf{A} \mathbf{x} = \sum_{i=1}^{n} (\mathbf{v}_i^T \mathbf{x}) \mathbf{A} \mathbf{v}_i \]

2. But \(\mathbf{A} \mathbf{v}_i = \mathbf{U} \Sigma \mathbf{V}^T \mathbf{v}_i = \mathbf{U} \Sigma \mathbf{e}_i = \sigma_i \mathbf{u}_i \). Thus

 \[\mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sigma_i (\mathbf{v}_i^T \mathbf{x}) \mathbf{u}_i \]

3. Similarly, for \(m = n \), \(\mathbf{b} = \sum_{i=1}^{n} (\mathbf{u}_i^T \mathbf{b}) \mathbf{u}_i \).

4. Immediately compare coefficients and obtain

 \(\sigma_i (\mathbf{v}_i^T \mathbf{x}) = \mathbf{u}_i^T \mathbf{b}, \ i = 1, \ldots, n \) and

 \[\mathbf{x} = \sum_{i=1}^{n} \frac{(\mathbf{u}_i^T \mathbf{b})}{\sigma_i} \mathbf{v}_i \]

5. Sensitivity of solutions depends on \(\text{cond}(\mathbf{A}) = \sigma_1 / \sigma_n \)
Let $U = [U_1, U_2]$ be square of size m, Σ rectangular of size $m \times n$:

$$A = U \Sigma V^T = [U_1, U_2] \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} V^T$$

The inverse is replaced by the pseudo inverse: if A has rank r

$$A^\dagger = \sum_{i=1}^{r} \frac{1}{\sigma_i} v_i u_i^T$$

Solution of the LS problem is given by

$$x = \sum_{i=1}^{r} \frac{(u_i^T b)}{\sigma_i} v_i$$

Sensitivity of solution depends on the condition as measured by σ_1/σ_r.

Recall singular values relation to eigenvalues λ_i of $A^T A$, $\sigma_i^2 = \lambda_i$
Quadrature - how do we obtain A

Need to understand how we go from integral to matrix.

Integral Equation \[< h, f > = g \]
Discrete Form \[A\mathbf{x} = \mathbf{b} \]

Quadrature to evaluate the integral (finite range $[a, b] \rightarrow [0, 1]$)

\[
\int_{0}^{1} p(t)dt = \sum_{j=1}^{n} \omega_j p(t_j) + E_n(p)
\]

- E_n is the error which depends on n and the function p.
- t_j are the abscissae, ω_j are weights for the rule.

For $< h, f > = g$, $p(t) = h(s, t)f(t)$. Thus

\[
\sum_{j=1}^{n} \omega_j h(s_i, t_j)f(t_j) = g(s_i) + E_n(s_i), \quad i = 1 \ldots m.
\]

Notice error depends also on the collocation point s_i.
Neglecting E and setting \tilde{x} as the approximation to x we obtain

$$\sum_{j=1}^{n} \omega_j h(s_i, t_j)\tilde{x}_j = g(s_i), \quad i = 1 \ldots m.$$

Thus defining $A = HD$, where

- D is a diagonal matrix $d_{jj} = \omega_j$
- $H_{ij} = h(s_i, t_j)$

$$A\tilde{x} = b$$

We could solve for scaled x say $\tilde{x} = D^{-1}\bar{x}$.

Given $b^{(m)}$ i.e. of length m we obtain $x^{(n)}$ of length n.

What do we use for the weights ω_j and abscissae t_j?

Trapezium rule etc. are collocation based methods. Give values of f at discrete t_j.

Expansion methods provide an expression for $f(t)$.
Galerkin Approach

SVE expands f and g in terms of basis functions and coefficients g_i, f_j.

\[g^{(m)} \in \text{span}\{\psi_1(s), \psi_2(s), \ldots, \psi_m(s)\} \quad f^{(n)} \in \text{span}\{\phi_1(s), \phi_2(s), \ldots, \phi_n(s)\} \]

\[g^{(m)}(s) = \sum_{i=1}^{m} g_i \psi_i(s), \quad f^{(n)}(t) = \sum_{j=1}^{n} f_j \phi_j(t) \quad \text{integrate} \]

\[g(s) = \int_0^1 h(s, t)f(t)dt \approx \int_0^1 h(s, t)\sum_{j=1}^{n} f_j \phi_j(t)dt := \theta(s) \]

$g(s) - \theta(s)$ is the residual. Galerkin approach require $\theta(s) - g(s)$ orthogonal to span\{\psi_1(s), \ldots, \psi_m(s)\}

\[<\psi_i(s), \theta(s) - g(s)> = 0 \quad i = 1 \ldots m \]

Hence $<\psi_i, \theta> = <\psi_i, g>$ \quad $i = 1 \ldots m$ gives

\[<\psi_i, g> = <\psi_i, \theta> = \sum_{j=1}^{n} f_j <\psi_i(s), \int_0^1 h(s, t)\phi_j(t)dt > \]

\[= \sum_{j=1}^{n} \left(\int_0^1 \int_0^1 h(s, t)\psi_i(s)\phi_j(t)dsdt \right) f_j \]
The integration defines A and right hand side b by

$$A_{ij} = \int_0^1 \int_0^1 h(s, t) \psi_i(s) \phi_j(t) ds dt, \quad b_i = <\psi_i, g>$$

Requires numerical quadrature for

$$\int_0^1 \int_0^1 h(s, t) \psi_i(s) \phi_j(t) ds dt \; \forall (i, j), \quad b_i = \int_0^1 \psi_i(s) g(s) ds, \; \forall i$$

If $h(s, t)$ is symmetric $h(s, t) = h(t, s)$; use $\phi_i(s) = \psi_i(s)$. Then A is symmetric.

Consider the case $\phi_i = \psi_i = \rho_i$ where ρ_i is the top hat

$$\rho_i(t) = \begin{cases} \frac{1}{\sqrt{h}} & t \in [(i - 1)h, ih] \\ 0 & \text{otherwise} \end{cases}$$

$$A_{ij} = \frac{1}{h} \int_{(i-1)h}^{ih} \int_{(j-1)h}^{jh} h(s, t) ds dt \quad b_i = \frac{1}{\sqrt{h}} \int_{(i-1)h}^{ih} g(s) ds$$
Sampling

g is sampled at s_i, thus

$$g(s_i) = \int_0^1 \delta(s - s_i) g(s) \, ds$$

suggests $\psi_i(s) = \delta(s - s_i)$ and

$$A_{ij} = \int_0^1 \int_0^1 h(s, t) \delta(s - s_i) \phi_j(t) \, ds \, dt = \int_0^1 h(s_i, t) \phi_j(t) \, dt$$

so that the quadrature is reduced to one dimensional.

Sampling can also be implemented with the top hat and then

$$A_{ij} = \frac{1}{\sqrt{h}} \int_0^1 \phi_j(t) \left(\int_{(i-1)h}^{ih} h(s, t) \, ds \right) \, dt, \quad b_i = \sqrt{h}g(s_i)$$
Idea: calculate an approximate SVE numerically via the SVD. Given the SVD how are the relevant components u_j, v_j (columns of U and V) and σ_j related to SVE basis functions $u_i(s), v_i(t)$, singular values μ_i.

Discrete matrix A depends on $\psi_i, i = 1, \ldots m$ and $\phi_j, j = 1 \ldots n$.

Continuous kernel h depends on $\psi_i, \phi_j, (i, j) = 1 \ldots \infty$.

Consider the approximate kernel \tilde{h} which is obtained by using the discrete set $\psi_i, i = 1 \ldots n$ and $\phi_j, j = 1 \ldots n$.

The result relates SVD of A to SVE of \tilde{h}.
Suppose that matrix A is calculated using the expansion method with functions $\psi_i, \phi_j, i, j = 1, \ldots n$. Calculate its SVD: $\Sigma = \text{diag}(\sigma_i), U = (u_{ij}), V = (v_{ij})$

Let $\tilde{u}_j^{(n)}(s) := \sum_{i=1}^{n} u_{ij} \psi_i(s), \tilde{v}_j^{(n)}(t) := \sum_{i=1}^{n} v_{ij} \phi_i(t), j = 1 : n$.

Theorem $\sigma_j^{(n)}, \tilde{u}_j^{(n)}, \tilde{v}_j^{(n)}$ are exact singular values and functions of degenerate kernel $h(s, t) := \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \psi_i(s) \phi_j(t)$

i.e. we have SVE for an approximate kernel - how does that relate to the exact kernel?

$$h(s, t) = \sum_{i} \mu_i u_i(s) v_i(t)$$
Limits with n, $\sigma_j^{(n)}$

SVD of $A^{(n)} = U^{(n)} \Sigma^{(n)} (V^{(n)})^T$

Error of the kernel: $\delta_n^2 := \|h - \tilde{h}\|^2 = \|h\|^2 - \|A\|^2_F$

Note $\| \cdot \|_F^2$ is the Frobenious norm $\|A\|^2_F = \sum_{i,j=1}^n a_{ij}^2$

Singular values converge $\sigma_i^{(n)} \leq \sigma_i^{(n+1)} \leq \mu_i$, $i = 1, \ldots, n$.

Errors are bounded $0 \leq \mu_i - \sigma_i^{(n)} \leq \delta_n$, $i = 1, \ldots, n$.

Hence if $\delta_n \to 0$ with n increasing, approximate singular values converge uniformly to true singular values.

$$\text{SSE} \sum_{i=1}^n [\mu_i - \sigma_i^{(n)}]^2 \leq \delta_n^2.$$

Estimation of δ_n from $\|h\|^2$

Orthonormality $\tilde{u}_i^{(n)}$, $\tilde{v}_i^{(n)}$ are orthonormal. Convergence

$$\max\{\|u_i - \tilde{u}_i^{(n)}\|, \|v_i - \tilde{v}_i^{(n)}\|\} \leq \left(\frac{2\delta_n}{\mu_i - \mu_{i+1}}\right)^{1/2}$$

Practically observe that approximate singular values are more accurate than approximate singular functions.
Significance of the Result

\[\langle \tilde{u}_j^{(n)}, g^{(n)} \rangle \] is important in the Picard condition.

\[
\langle \tilde{u}_j^{(n)}, g^{(n)} \rangle = \int_0^1 \left(\sum_{i=1}^n u_{ij}^{(n)} \psi_i(s) \right) \left(\sum_{k=1}^n b_k \psi_k(s) \right) ds \\
= \sum_{i,k} u_{ij}^{(n)} b_k \langle \psi_i, \psi_k \rangle = \sum_i u_{ij}^{(n)} b_i = u_j^T b
\]

SVD and approximate inner products are related.
i.e. the exact inner products \(\langle u_j, g \rangle, i = 1, \ldots, \) are approximated by \(\langle u_j^{(n)}, g^{(n)} \rangle \) which is immediately obtained from the SVD for \(A \).

Discrete Picard Condition

Let \(\tau \) denote the level such that

\[\forall j > r, \sigma_j \approx O(\tau), \] due to noise and rounding. The discrete Picard condition is satisfied if for \(j \leq r \) the coefficients \(|(u_j^{(n)})^T b| \) decay faster than \(\sigma_j \).

Picard condition applies only for \(\sigma_j > O(\tau) \). It is a condition on the size of the inner products \((u_j^{(n)})^T b \) for \(j \leq r \).
Discrete Solution approximates Continuous Solution

\begin{align*}
\text{SVE Solution} & \quad \text{SVD Solution} \\
\quad f(t) = \sum_j \frac{\langle u_j, g \rangle}{\mu_j} v_j(t) & \quad \tilde{x} = \sum_{j=1}^n \frac{\langle u_j^{(n)}, b \rangle}{\sigma_j} v_j^{(n)}
\end{align*}

But \(\langle u_j^{(n)}, b \rangle = \langle \tilde{u}_j^{(n)}, g^{(n)} \rangle \) where \(\tilde{u}_j^{(n)} \) tends to \(u_j \) with increasing \(n \), while \(\sigma_j^{(n)} \) converges to \(\mu_j \) with \(n \).

Equivalently, if the discretization with increasing \(n \) is sufficiently good, the approximate solution obtained from the SVD is essentially independent of the discretization.

For solving the first kind Fredholm integral equation numerically, the coefficients \((u_j^{(n)})^T b\) and singular values \(\sigma_j\) reveal important information about the true quantities \(\langle u_j, g \rangle\) and \(\mu_j\).
Summary Approach - see Hansen for more details/examples

For increasing n until converged
1. Choose the orthonormal basis functions $\psi_i(s)$ and $\phi_i(t)$.
2. Calculate matrix A with entries $a_{ij} = \langle \psi_i, h\phi_j \rangle$,
 $i, j = 1, \ldots, n$.
3. Compute SVD of A
4. Estimate the singular functions $\tilde{u}_j(s)$ and $\tilde{v}_j(t)$

Test Convergence of set of singular values.

End For
Is square integrable required for the theory?

Consider solving for f from the Laplace transform

$$g(s) = \int_0^\infty e^{-st} f(t) \, dt$$

Kernel e^{-st} is not square integrable:

$$\int_0^a (e^{-st})^2 \, ds = \int_0^a e^{-2st} \, ds = \frac{1 - e^{-2ta}}{2t} \to \frac{1}{2t} \text{ for } a \to \infty$$

But $\int_0^\infty t^{-1}$ is infinite, $\int_0^\infty \int_0^\infty (e^{-st})^2 \, ds \, dt$ is infinite. No SVE

Now $f(t)$ bounded for $t \to \infty$ implies $g(s)$ is bounded $\forall s \geq 0$.

Truncation for large a in Laplace transform introduces small error in g, and g decays with s. We obtain integral equation

$$\int_0^a e^{-st} f(t) \, dt = g(s), \quad 0 \leq s \leq a.$$

Now the kernel is square integrable.

Pick a and increase n, the SVD converges.

Pick n and increase a, the SVD does not converge.

Demonstrates the lack of SVE for the Laplace Transform.
Solution for Noisy Data

- Denote noise by e or $\text{array}(e) = E$.
- Spectral decomposition acts on the noise term in the same way it acts on the exact right hand side b. e.g.

$$x = \sum_{i=1}^{r} \left(\frac{u_i^T(b_{\text{exact}} + e)}{\sigma_i} \right) v_i = x_{\text{exact}} + \sum_{i=1}^{r} \left(\frac{u_i^T e}{\sigma_i} \right) v_i$$

- If e is uniform, anticipate $|u_i^T e|$ of similar magnitude $\forall i$.
- Can only recover components that arise from $|u_i^T b|$ greater than the noise level.
- But anticipate $\sigma_i \rightarrow 0$. σ_i small represents high frequency component in the sense that u_i, v_i have more sign changes as i increases.
- $\left(\frac{u_i^T e}{\sigma_i} \right)$ is the coefficient of v_i in the error image.
- If $1/\sigma_i$ large the contribution of the high frequency error is magnified due to $\left(\frac{u_i^T e}{\sigma_i} \right)$.
Truncating the SVD expansion

The SVD expansion shows the impact of the noise on the calculation of \(\mathbf{x} = \sum_{i=1}^{r} (\frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i}) \mathbf{v}_i \). Therefore it seems reasonable to consider the truncated solution

\[
\mathbf{x}_k = \sum_{i=1}^{k} (\frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i}) \mathbf{v}_i = A_k \mathbf{b}
\]

Here \(A_k \) is a rank \(k \) matrix.

- The use of the truncated expansion is feasible only if we can first calculate the SVD of \(A \) efficiently.
- The limit on the sum \(k \) is regarded as a regularization parameter. We can change \(k \) and obtain different solutions.
- Choice of \(k \) controls the degree of low pass filtering which is applied. i.e. controls the attenuation of the high frequency components.
- Look at the example: the image is over or under smoothed dependent on \(k \).
Example of Truncated SVD

Example from Hansen, Nagy and O’Leary, Fig 5.1
Notice under or over smoothing is dependent on choice of k in the TSVD

Figure 5.1. Exact image (top left) and three TSVD solutions x_k to the image deblurring problem, computed for three different values of the truncation parameter: $k = 658$ (top right), $k = 2813$ (bottom left), and $k = 7243$ (bottom right). The corresponding solutions range from oversmoothed to undersmoothed, as k goes from small to large values.
Results suggest that we need information on SVD of A
Also need information on the spread of the singular values.
Ideally information on the noise level in the data is available.
Practically we need the \textbf{numerical} rank of A.
Practically it is not always viable to find the effective numerical rank
We turn to other methods to find acceptable solutions.
The Filtered SVD - more general than truncation

The truncated SVD is a special case of spectral filtering. Recall \(x = A^\dagger b = V\Sigma^\dagger U^T b \).

The filtered solution is given by

\[
\begin{align*}
x_{\text{filt}} &= \sum_{i=1}^{r} \gamma_i \left(\frac{u_i^T b}{\sigma_i} \right) v_i = V\Sigma_{\text{filt}}^\dagger U^T b, \\
\Sigma_{\text{filt}}^\dagger &= \text{diag}(\gamma_i \sigma_i, 0_{m-r})
\end{align*}
\]

i.e

\[
x = V\Gamma\Sigma^\dagger U^T b,
\]

where \(\Gamma \) is the diagonal matrix with entries \(\gamma_i \).

Notice again the relationship with the SVE - filter out the terms which are noise contaminated.

\(\gamma_i \approx 1 \) for large \(\sigma_i \), \(\gamma_i \approx 0 \) for small \(\sigma_i \)

Spectral filtering is used to filter the components in the spectral basis, such that noise in signal is damped.

How to chose filter factors \(\gamma_i \)?

Truncated SVD takes \(\gamma_i = 1 \), \(1 \leq i \leq k \) and 0 otherwise to obtain solution \(x_k \).
Regularization by Spectral Filtering \(\mathbf{x}_{\text{filt}} = \sum_{i=1}^{r} \gamma_i \left(\frac{\mathbf{u}_i^T \mathbf{b}}{\sigma_i} \right) \mathbf{v}_i \)

- **Tikhonov** \(\gamma_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \), \(i = 1 \ldots r \), \(\lambda \) is the regularization parameter, and solution is

\[
\mathbf{x}_\lambda = \arg \min_{\mathbf{x}} \{ \| \mathbf{b} - A\mathbf{x} \|^2 + \lambda^2 \| \mathbf{x} \|^2 \}
\]

- Regularized solution trades of \(\| \mathbf{x} \|^2 \) against \(\| \mathbf{b} - A\mathbf{x} \|^2 \).

- Notice

\[
\gamma_i = \begin{cases}
1 - \left(\frac{\lambda}{\sigma_i} \right)^2 + O(|\frac{\lambda}{\sigma_i}|^4) & \sigma_i \gg \lambda \\
\left(\frac{\sigma_i}{\lambda} \right)^2 + O(|\frac{\sigma_i}{\lambda}|^4) & \sigma_i \ll \lambda
\end{cases}
\]

- If \(\lambda \in [\sigma_r, \sigma_1] \), \(\gamma_i \approx 1 \) for small \(i \), and \(\gamma \approx (\sigma_i/\lambda)^2 \) for large \(i \) (small \(\sigma_i \))

- **Conclude** Parameter \(\lambda \) controls the filtering. If \(\lambda \approx \gamma_k \), then filtered solution does not include components related to \(\sigma_{k+1} \ldots \sigma_r \).

- **Moreover** it is sensible to keep \(\lambda \in [\sigma_r, \sigma_1] \).
Again, now noting error in \(\mathbf{b} = \mathbf{b}_{\text{exact}} + \mathbf{e} \)

\[
\mathbf{x}_{\text{filt}} = V\Sigma_{\text{filt}}^\dagger U^T (\mathbf{b}_{\text{exact}} + \mathbf{e})
\]
\[
= V\Sigma_{\text{filt}}^\dagger U^T (U\Sigma V^T \mathbf{x}) + V\Sigma_{\text{filt}}^\dagger U^T \mathbf{e}
\]
\[
= V\Gamma V^T \mathbf{x} + V\Gamma\Sigma^\dagger U^T \mathbf{e}
\]

implies \(\mathbf{x} - \mathbf{x}_{\text{filt}} = (I_n - V\Gamma V^T)\mathbf{x} - V\Gamma\Sigma^\dagger U^T \mathbf{e} \)

\(= \) Regularization Perturbation

Error Error

Regularization Error due to using \(\Sigma_{\text{filt}} \) in place of \(\Sigma \).

Perturbation Error the inverted and filtered noise, consistently zero if \(\Gamma = 0 \).
Size of the Regularization Error

Notice

\[\| (I_n - V\Gamma V^T)x \|_2^2 = \| (I_n - \Gamma)V^T x \|_2^2, \quad V \text{ orthogonal} \]
\[= \| (I_n - \Gamma)\Sigma^\dagger U^T b \|_2^2 \]
\[= \sum_{i=1}^{n} ((1 - \gamma_i) \frac{u_i^T b}{\sigma_i})^2 \]

- $|\frac{u_i^T b}{\sigma_i}|$ decays on average by Picard condition
- For small i (σ_i big) $\gamma_i \approx 1$, and $(1 - \gamma_i) \approx 0$. Little error from large $|\frac{u_i^T b}{\sigma_i}|$
- For large i $(1 - \gamma_i) \approx 1$ provides little damping of smaller $|\frac{u_i^T b}{\sigma_i}|$
- Choice of Γ controls size of regularization error.