CONFORMALLY RECURRENT
SEMI-RIEMANNIAN MANIFOLDS

YOUNG JIN SUH AND JUNG-HWAN KWON

ABSTRACT. In this paper we give a complete classification of conformally recurrent semi-Riemannian manifolds with harmonic conformal curvature tensor and to give another generalization of conformally symmetric Riemannian manifolds. Moreover, we give a nontrivial example which is neither locally symmetric nor conformally flat.

1. Introduction. Let us denote by M an $n(\geq 4)$-dimensional semi-Riemannian manifold with semi-Riemannian metric g and Riemannian connection ∇ and let R, respectively S or r, be the Riemannian curvature tensor, respectively the Ricci tensor or the scalar curvature, on M.

It is said to be conformally recurrent if the conformal curvature tensor C with components C_{ijkl} so that

\[
C_{ijkl} = R_{ijkl} - \frac{1}{n-2} \left(S_{il} g_{jk} - S_{ik} g_{jl} + S_{jkl} g_{il} - S_{jil} g_{jk} \right) + \frac{r}{(n-1)(n-2)} \left(g_{il} g_{jk} - g_{ik} g_{jl} \right)
\]

is recurrent, i.e., there is a 1-form α such that $\nabla C = \alpha \otimes C$, where R_{ijkl}, S_{ij} and g_{ij} are components of R, S and g on M. In particular, it is said to be conformally symmetric if $\nabla C = 0$. As is easily seen, the class of conformally recurrent semi-Riemannian manifolds includes all the classes of conformally symmetric, conformally flat and locally symmetric semi-Riemannian manifolds. Among them such kind of Riemannian manifolds are studied by Besse [2], Ryan [12], Simon [13], Weyl [15, 16], Yano [17], Yano and Bochner [18], for example.

2000 AMS Mathematics Subject Classification. Primary 53C40, 53C15.
Key words and phrases. Weyl curvature tensor, conformally symmetric, conformlike curvature tensor, semi-Riemannian manifold.

This work was supported by grant Proj. No. R14-2002-003-01001-0 from the Korea Science & Engineering Foundation.

Received by the editors on August 1, 2002.

Copyright ©2005 Rocky Mountain Mathematics Consortium