Notes on: f in $A \times _{\alpha } G$

Let (A, G, α) be an action (where A is a C^*-algebra and G is a locally compact group), and let $f \in C_c(G, A)$. Also let (i_A, i_G) be the canonical covariant homomorphism of (A, G) in $M(A \times _{\alpha } G)$. We are concerned with the proof of the following:

Proposition 1. $f = i_A \times i_G(f)$.

The proof in [1, Corollary 2.36] is not quite adequate because, when it refers to [1, Lemma 2.31], it is to conclude that if $T \in M(A \times _{\alpha } G)$ and $\pi \times U(T) = 0$ for all nondegenerate covariant representations (π, U) then $Tf = 0$ for all $f \in A \times _{\alpha } G$. Of course this would suffice to show that $T = 0$, since a multiplier is determined by its action as a left multiplier. However, Lemma 2.31 only implies that if $f \in C_c(G, A)$ and $\pi \times U(f) = 0$ for all nondegenerate covariant representations then $f = 0$ — it does not show the corresponding conclusion for all $f \in A \times _{\alpha } G$. To fix this small gap we need to slightly strengthen the last statement of Lemma 2.31:

Lemma 2. If $f \in A \times _{\alpha } G$ then

$$\|f\| = \sup\{\|\pi \times U(f)\| : (\pi, u) \text{ is a nondegenerate covariant representation}\}.$$

Proof. Let $\varepsilon > 0$. It suffices to show that there exists a nondegenerate covariant representation (π, U) such that

$$\|\pi \times U(f)\| > \|f\| - \varepsilon.$$

Choose $g \in C_c(G, A)$ such that $\|f - g\| < \varepsilon /3$. Then by [1, Lemma 2.31] we can choose a nondegenerate covariant representation (π, U) such that

$$\|\pi \times U(g)\| > \|g\| - \frac{\varepsilon}{3}.$$

We have

$$\|\pi \times U(f)\| \geq \|\pi \times U(g)\| - \|\pi \times U(f) - \pi \times U(g)\|$$

$$> \|g\| - \frac{\varepsilon}{3} - \|\pi \times U(f - g)\|$$

$$\geq \|f\| - \|g - f\| - \frac{\varepsilon}{3} - \|f - g\|$$

$$> \|f\| - \varepsilon \quad \Box$$

References