Exercise 1. Let A be a unital C^*-algebra, and let $a \in A$ be positive, which means that a is self-adjoint and
\[\sigma(a) \subset [0, \infty). \]

(a) Prove that if B is any commutative C^*-subalgebra of A such that $a \in B$ and $1 \in B$ then there is a unique positive element $b \in B$ such that $b^2 = a$. Hint: continuous functional calculus.

(b) Prove that if $b, c \in A$ are positive and $b^2 = c^2 = a$ then $b = c$. Hint: Let b be the unique positive element of $C^*(a, 1)$ such that $b^2 = a$, and prove that c commutes with a.

Exercise 2. Let \mathcal{H} be a Hilbert space, and let $U \in B(\mathcal{H})$ be unitary.

(a) Prove that
\[\sigma(U) \subset \mathbb{T}. \]
Hint: continuous functional calculus.

(b) Prove there exists a self-adjoint operator $T \in B(\mathcal{H})$ such that $e^{iT} = U$. Hint: use the Borel functional calculus with a suitable version of log on \mathbb{T}.