Unless otherwise specified, all vector spaces have scalar field $\mathbb{F} = \mathbb{R}$ or \mathbb{C}.

Theorem. For a subset B of a vector space X, the following are equivalent:

1. B is a basis;
2. B is linearly independent and spans X;
3. every vector in X can be written uniquely as a linear combination of vectors in B.

Theorem. Every linearly independent subset of a vector space X can be extended to a basis of X.

Theorem. Every spanning subset of a vector space X contains a basis of X.

Theorem. Let X and Y be vector spaces, $\{u_i\}_{i \in I}$ a basis of X, and $\{v_i\}_{i \in I} \subset Y$. Then there exists a unique linear map $T: X \to Y$ such that $Tu_i = v_i$ for all $i \in I$.

Theorem. Let X be a vector space with basis $B = \{u_i\}_{i \in I}$. For each $i \in I$ let f_i be the unique linear functional on X such that

$$f_i(u_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if not.} \end{cases}$$

Then:

1. for every $x \in X$, $x = \sum_{i \in I} f_i(x)u_i$ is the expression of x as a linear combination of the basis vectors;
2. the map $f = (f_i)_{i \in I}$ gives an isomorphism of X onto the direct sum $\bigoplus_{i \in I} \mathbb{F}$, where \mathbb{F} is the scalar field. In particular, if $I = \{1, \ldots, n\}$ then f is an isomorphism of X onto \mathbb{F}^n.

Theorem. Let X and Y be finite-dimensional vector spaces with bases $B = \{u_1, \ldots, u_n\}$ and $C = \{v_1, \ldots, v_m\}$, respectively. For each $i = 1, \ldots, n, j = 1, \ldots, m$ let $E_{ij}: X \to Y$ be the unique linear map such that

$$E_{ij}u_k = \begin{cases} v_i & \text{if } k = j \\ 0 & \text{if not.} \end{cases}$$

Then:

Date: August 18, 2005.
1. \(\{E_{ij} : i = 1, \ldots, n, j = 1, \ldots, m\} \) is a basis for the vector space of all linear maps from \(X \) to \(Y \);

2. for each linear map \(T : X \to Y \), let \(T = \sum_{ij} a_{ij}E_{ij} \). Then the \(m \times n \) matrix \(A = (a_{ij}) \) has the following property: if \(x \in X \) has \(n \)-tuple \((x_1, \ldots, x_n) \) relative to the basis \(B \), then the \(i \)-th coordinate of the \(m \)-tuple of \(Tx \) relative to the basis \(C \) is given by

\[
(Tx)_i = \sum_{j=1}^{n} a_{ij}x_j.
\]

Theorem. Let \(B \) and \(C \) be bases for vector spaces \(X \) and \(Y \), respectively. Then \(X \) and \(Y \) are isomorphic if and only if \(B \) and \(C \) have the same cardinality. In particular, if \(X \) and \(Y \) are finite-dimensional, then \(X \cong Y \) if and only if \(\dim X = \dim Y \).

Theorem. Let \(T : X \to Y \) be linear, let \(Z \) be a subspace of \(X \), and let \(Q : X \to X/Z \) be the quotient map. Then there exists a linear map \(S : X/Z \to Y \) making the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow{Q} & & \nearrow{S} \\
X/Z & & \\
\end{array}
\]

commute, i.e., such that \(T = S \circ Q \), if and only if \(\ker T \supseteq Z \), in which case \(\ker S = (\ker T)/Z \).

Theorem. For every subspace \(Y \) of a vector space \(X \) there is a complementary subspace, i.e., a subspace \(Z \) such that \(X = Y \oplus Z \).

Theorem. If \(X = Y \oplus Z \), then there is a unique idempotent linear operator \(P \) on \(X \) with range \(Y \) and kernel \(Z \). Conversely, if \(P \) is an idempotent linear operator on \(X \), then \(X = \text{ran} T \oplus \ker T \).

Theorem. If \(T : X \to Y \) is linear and \(X \) is finite-dimensional, then

\[
\dim X = \dim \text{ran} T + \dim \ker T.
\]

Theorem. Let \(f \) and \(g_1, \ldots, g_n \) be linear functionals on a vector space \(X \). Then \(f \) is a linear combination of \(g_1, \ldots, g_n \) if and only if \(\ker f \supseteq \bigcap_{i=1}^{n} \ker g_i \).

Theorem. If \(Y \) and \(Z \) are subspaces of a vector space \(X \), the assignment \((y, z) \mapsto y + z \) gives a linear map of the external direct sum \(Y \oplus Z \) onto the sum \(Y + Z \), with kernel \(\{(x, -x) : x \in Y \cap Z\} \). In particular, if \(X \) is finite-dimensional then

\[
\dim(Y + Z) = \dim Y + \dim Z - \dim(Y \cap Z).
\]

Cauchy-Schwartz Inequality. Let \(X \) be an inner product space and \(x, y \in X \). Then

\[
|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle.
\]
Theorem. If Y is a subspace of a finite-dimensional inner product space X, then:

1. $Y^\perp \perp = Y$,
2. $X = Y \oplus Y^\perp$, and
3. the unique idempotent operator P on X with range Y and kernel Y^\perp is self-adjoint (i.e., $P = P^*$).

Real Spectral Theorem. If T is a linear operator on a finite-dimensional real inner product space X, then T is self-adjoint if and only if X has an orthonormal basis of eigenvectors of T.

Complex Spectral Theorem. If T is a linear operator on a finite-dimensional complex inner product space X, then T is normal (i.e., $TT^* = T^*T$) if and only if X has an orthonormal basis of eigenvectors of T.