INTEGRATION RESULTS

JOHN QUIGG

Theorem. The set of measurable functions on a measurable space is a vector space which is closed under pointwise sequential limits.

Theorem. The set of integrable functions on a measure space is a vector space on which the integral is a linear functional.

Theorem. On every \mathbb{R}^n, Lebesgue measure, and the σ-algebra of Lebesgue measurable sets, exist, are unique, and are complete and σ-finite.

Theorem. On a measurable space, if f is measurable, then there exists a sequence $\{\phi_n\}$ of simple functions such that $|\phi_n| \leq |f|$ and $\phi_n \to f$ pointwise. Moreover, if f is nonnegative then without loss of generality $0 \leq \phi_n \nearrow f$.

Theorem. On a measure space (X, μ), if f is measurable, then f is integrable if and only if $|f|$ is, in which case $$\left| \int f \, d\mu \right| \leq \int |f| \, d\mu.$$

Monotone Convergence Theorem. If $\{f_n\}$ is an increasing sequence of nonnegative measurable functions, then $$\lim_{n \to \infty} \int f_n \, d\mu = \int \lim_{n \to \infty} f_n \, d\mu.$$

Fatou's Lemma. If $\{f_n\}$ is a sequence of nonnegative measurable functions, then $$\liminf \int f_n \, d\mu \leq \int \liminf f_n \, d\mu.$$

Dominated Convergence Theorem. Let $\{f_n\}$ be an a.e.-convergent sequence of integrable functions. If there exists an integrable function g such that $|f_n| \leq g$ a.e. for all n, then $\lim f_n$ is integrable and $$\int \lim f_n \, d\mu = \lim \int f_n \, d\mu.$$

Series Version of DCT. If $\sum_n f_n$ is a series of integrable functions such that $\sum_n |f_n| < \infty$ a.e., then $\sum_n f_n$ converges a.e., the sum is integrable, and $$\int \sum_n f_n \, d\mu = \sum_n \int f_n \, d\mu.$$

Date: August 18, 2005.
Theorem. If f is Lebesgue integrable on \mathbb{R}^n, then there exists a sequence $\{g_n\}$ of continuous functions with compact support such that:

1. $|g_n| \leq \sup |f|$ for all n;
2. $g_n \to f$ a.e.;
3. $\int |f - g_n| \to 0$.

Theorem. A bounded function $f: [a, b] \to \mathbb{R}$ is Riemann integrable if and only if it is continuous a.e., in which case it is also Lebesgue integrable and the two integrals agree.

Fubini’s Theorem. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be complete sigma-finite measure spaces. If f is $\mu \times \nu$-integrable on $X \times Y$, then:

1. $f(x, y)$ is a μ-integrable function of x for ν-a.e. $y \in Y$;
2. the ν-a.e.-defined function $y \mapsto \int f(x, y) \, d\mu(x)$ on Y is ν-integrable;
3. $\iint f(x, y) \, d\mu(x) \, d\nu(y) = \int f \, d(\mu \times \nu)$.

Tonelli’s Theorem is similar, but replaces “integrable” by “nonnegative and measurable”.

Theorem. Lebesgue measure on \mathbb{R}^{n+m} is the completion of the product of the Lebesgue measures on \mathbb{R}^n and \mathbb{R}^m.

Change of Variables Theorem. Let ϕ be a C^1 diffeomorphism of an open set $U \subset \mathbb{R}^n$ onto an open set $\phi(U) \subset \mathbb{R}^n$, and let f be an integrable function on $\phi(U)$. Then

$$\int_{\phi(U)} f(u) \, du = \int_U f(\phi(x)) \, |\det \phi'(x)| \, dx.$$