LINEAR ALGEBRA DEFINITIONS

JOHN QUIGG

Unless otherwise specified, all vector spaces have scalar field \(F = \mathbb{R} \) or \(\mathbb{C} \).

A (Hamel) basis for a vector space is a maximal linearly independent subset.

Let \(X \) and \(Y \) be vector spaces and \(T: X \to Y \). Then \(T \) is linear if for all \(x, y \in X \) and \(c \in F \) we have \(T(x + y) = Tx + Ty \) and \(T(cx) = cTx \).

A linear functional on a vector space \(X \) is a linear map from \(X \) to \(F \).

Let \(X \) be a vector space, \(A, B \subset X \), \(z \in X \), \(C \subset F \), and \(d \in F \). Then:

\[
\begin{align*}
A + B &:= \{x + y : x \in A, y \in B\} \\
z + A &:= \{z\} + A \\
CA &:= \{cx : c \in C, x \in A\} \\
dA &:= \{d\}A \\
Cz &:= C\{x\}.
\end{align*}
\]

More generally, if \(\{A_i\}_{i \in I} \) is a family of subsets of \(X \), then

\[
\sum_{i \in I} A_i := \left\{ \sum_{i \in I} x_i : x_i \in A_i \text{ for all } i \in I \text{ and } x_i \text{ is only finitely nonzero} \right\}.
\]

Let \(Z \) be a subspace of a vector space \(X \). The quotient space \(X \) modulo \(Z \) is the set \(X/Z = \{x + Z : x \in X\} \), with operations

\[
(x + Z) + (y + Z) = (x + y) + Z \quad \text{and} \quad c(x + Z) = (cx) + Z
\]

for \(x, y \in X \), \(c \in F \).

Moreover, the function \(Q: X \to X/Z \) defined by \(Qx = x + Z \) is the quotient map.

Let \(T: X \to Y \) be linear.

1. The range of \(T \) is \(\text{ran } T := T(X) = \{Tx : x \in X\} \).

2. The kernel of \(T \) is \(\ker T := T^{-1}(\{0\}) = \{x \in X : Tx = 0\} \).
Let \(\{X_i\}_{i \in I} \) be a family of vector spaces.

1. The direct product is the cartesian product \(\prod_{i \in I} X_i \) with the operations \((x_i) + (y_i) = (x_i + y_i)\) and \(c(x_i) = (cx_i)\).

2. The direct sum is

\[
\bigoplus_{i \in I} X_i := \left\{ (x_i) \in \prod_{i \in I} X_i : x_i = 0 \text{ for all but finitely many } i \in I \right\}
\]

A family \(\{Y_i\}_{i \in I} \) of subspaces of a vector space is independent if for all finite \(J \subset I \) and \(x_i \in Y_i \) for \(i \in J \), if \(\sum_{i \in J} x_i = 0 \) then \(x_i = 0 \) for all \(i \in J \).

If \(\{Y_i\}_{i \in I} \) is an independent family of subspaces of a vector space, then \(\sum_{i \in I} Y_i \) is the internal direct sum of the \(Y_i \)'s, and \(\bigoplus_{i \in I} Y_i \) is the external direct sum of the \(Y_i \)'s. The map

\[
(x_i) \mapsto \sum_{i \in I} x_i : \bigoplus_{i \in I} Y_i \to \sum_{i \in I} Y_i
\]

is an isomorphism, and we blur the distinction between the terminology and notation for the external and internal direct sums.

Let \(Y \) and \(Z \) be subspaces of a vector space \(X \). \(Z \) is an algebraic complement of \(Y \) if \(Y \) and \(Z \) are independent.

A linear operator \(T \) on \(X \) is idempotent if \(T^2 = T \).