Throughout this discussion, we have \(T \in B(H) \), where \(H \) is a Hilbert space over \(\mathbb{C} \).

A closed subspace \(M \) of \(H \) is \textit{invariant} under \(T \) if \(T(M) \subseteq M \), and \textit{reduces} \(T \) if both \(M \) and \(M^\perp \) are \(T \)-invariant.

Proposition. Let \(P \) be the projection onto a closed subspace \(M \) of \(H \). Then:

1. \(M \) is \(T \)-invariant if and only if \(TP = PTP \);
2. \(M \) reduces \(T \) if and only if \(TP = PT \), if and only if \(M \) is invariant under both \(T \) and \(T^* \).

Proposition. Let \(\{M_i\}_{i \in I} \) be a pairwise orthogonal set of closed subspaces of \(H \). Then \(\overline{\text{span}}_{i} M_i \)

1. is \(T \)-invariant if each \(M_i \) is, and
2. reduces \(T \) if each \(M_i \) does.

Proposition. If \(T \) is normal and \(\lambda \) is an eigenvalue of \(T \), then \(\ker(T - \lambda) \) reduces \(T \).