Let X be a topological vector space and Y a closed subspace. Let $Q: X \to Y$ denote the quotient map $Qx = x + Y$. The quotient space X/Y is given the quotient topology generated by Q, that is, the strongest topology making Q continuous.

Proposition. Let X be a topological vector space and Y a closed subspace. Then:

1. The quotient space X/Y is a topological vector space, and Q is open.
2. If B is a local base for X, then $\{Q(U) : U \in B\}$ is a local base for X/Y.
3. If X is locally convex, locally bounded, metrizable, normable, an F-space, Fréchet, or Banach, then so is X/Y.

Corollary. Let Y and Z be subspaces of a topological vector space. If Y is closed and Z is finite dimensional, then $Y + Z$ is closed.

Proposition. Let X and Y be topological vector spaces, let N be a closed subspace of X, and let $T: X \to Y$ be linear. Suppose $N \subset \ker T$. Then there exists a unique linear map S making the diagram

$$
\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow{Q} & & \downarrow{S} \\
X/N & \nearrow{s} \\
\end{array}
$$

commute (where Q is the quotient map), and moreover T is continuous or open if and only if S is.