Throughout this discussion, H will be a Hilbert space over \mathbb{C}.

Functional Calculus. Let T be a bounded normal operator on H, and let A be the unital C^*-subalgebra of $B(H)$ generated by T. Then there is a unique isometric $*$-isomorphism

$$f \mapsto f(T): C(\sigma(T)) \xrightarrow{\cong} A$$

which takes 1 to 1 and z to T.

More precisely, by “z” in the above we mean the function $g \in C(\sigma(T))$ defined by $g(z) = z$.

Proof. Let Δ be the maximal ideal space of the commutative unital C^*-algebra A, and let

$$S \mapsto \hat{S}: A \rightarrow C(\Delta)$$

be the Gelfand transform, which is an isometric $*$-isomorphism by the Gelfand-Naimark Theorem. Let $\phi: C(\Delta) \rightarrow A$ be the inverse of the Gelfand transform. Note that $\phi(\hat{T}) = T$ and $\phi(1) = 1$.

Note that \hat{T} is a continuous function of Δ onto $\sigma(T)$. Now, the polynomials in T and T^* are dense in A, so the polynomials in \hat{T} and \overline{T} are dense in $C(\Delta)$. Since the complex homomorphisms of A preserve adjoints, the function \hat{T} separates the points of Δ. Thus \hat{T} is a homeomorphism of Δ onto $\sigma(T)$.

Hence the map $f \mapsto f \circ \hat{T}$ is an isometric $*$-isomorphism of $C(\sigma(T))$ onto $C(\Delta)$. Note that this isomorphism takes z to \hat{T} and 1 to 1.

Thus the composition $f \mapsto \phi(f \circ \hat{T})$ is an isometric $*$-isomorphism of $C(\sigma(T))$ onto A.

For the uniqueness, note that the polynomials in z and \overline{z} are dense in $C(\sigma(T))$.

QED