If X and Y are topological vector spaces, a subset $\Gamma \subset L(X,Y)$ is *equicontinuous* if for every neighborhood W of 0 in Y, $\bigcap_{T \in \Gamma} T^{-1}(W)$ is a neighborhood of 0 in X.

Proposition. Let X and Y be topological vector spaces, and let $\Gamma \subset L(X,Y)$ be equicontinuous. If A is bounded in X then $\bigcup_{T \in \Gamma} T(A)$ is bounded in Y.

Banach-Steinhaus Theorem. Let X and Y be topological vector spaces, and let $\Gamma \subset L(X,Y)$ be equicontinuous. If Γ is pointwise bounded on a nonmeager set in X, then it is pointwise bounded on X and is equicontinuous.

Uniform Boundedness Principle. Let X and Y be Banach spaces, and let $\Gamma \subset B(X,Y)$. If Γ is pointwise bounded then it is bounded.

Corollary. Let X be a topological vector space, let Y be an F-space, and let $\{T_n\}$ be a sequence in $L(X,Y)$. If $\{T_n\}$ is pointwise convergent on a nonmeager set in X, then it is pointwise convergent on X and $\lim T_n$ is continuous.

Corollary. Let X be an F-space, let Y be a topological vector space, and let $\{T_n\}$ be a sequence in $L(X,Y)$. If $\{T_n\}$ is pointwise convergent, then $\lim T_n$ is continuous.