Throughout this discussion X will be a locally compact Hausdorff space, with one-point compactification X^*. We assume the basic properties of X^*.

Proposition 0.1. If $K \subset U \subset X$ with K compact and U open, there exist an open set V and a compact set L such that

$$K \subset V \subset L \subset U.$$

Proof. K is closed in X^* and U is open in X^*. Since X^* is compact Hausdorff, hence normal, there exist V and L such that $K \subset V \subset L \subset U$, V is open X^*, and L is (closed in X^*, hence) compact. Then V is also open in X. □

Theorem 0.2 (Urysohn). If $K \subset U \subset X$ with K compact and U open, there exists $f \in C_c(X, [0, 1])$ such that $f \equiv 1$ on K and $\text{supp} \ f \subset U$.

Proof. Apply the above proposition to get V and L. Since X^* is normal there exists $g \in C(X^*, [0, 1])$ which is identically 1 on K and 0 outside V. Then $f := g|A \in C(X, [0, 1])$ is identically 1 on K and vanishes outside the compact subset L of U. The result follows. □

Theorem 0.3 (Tietze). If $K \subset X$ is compact and $f \in C(K)$, then there exists $g \in C_c(X)$ extending f.

Proof. Apply Tietze to X^* to get $\phi \in C(X^*)$ extending f, and let $\psi = \phi|X \in C(X)$. Apply the above version of Urysohn to choose $\theta \in C_c(X)$ which is identically 1 on K. Then $g := \psi \theta \in C_c(X)$ extends f. □

Now we assume the definition of $C_0(X)$. It follows straight from the definitions that

$$C_0(X) = \{f|X \mid f \in C(X^*), f(\infty) = 0\},$$

and the (uniform) norm of $f \in C(X^*)$ coincides with the norm of $f|X$ in $C_b(X)$.

Theorem 0.4. $C_0(X)$ is the closure of $C_c(X)$ in $C_b(X)$.
Proof. The characterization of $C_0(X)$ mentioned immediately before the current theorem shows that $C_0(X)$ is closed in $C_b(X)$. Let $f \in C_0(X)$ and $\epsilon > 0$. Choose a compact set \(K \subset X \) such that \(|f| < \epsilon\) off \(K \). Then choose \(g \in C_c(X, [0, 1]) \) such that \(g \equiv 1 \) on \(K \). Then \(fg \in C_c(X) \). We have \(fg = f \) on \(K \), and for \(x \notin K \) we have

\[|f(x) - f(x)g(x)| = |f(x)| (1 - g(x)) \leq |f(x)| < \epsilon. \]

Thus \(\|f - fg\| < \epsilon \). \(\square \)