Proposition 1. If X_1, \ldots, X_n are second countable, then

$$\bigotimes_1^n B_{X_i} = B_X,$$

where $X = \prod_1^n X_i$.

Proof. LHS is generated by $\pi_i^{-1}(U)$ for $i = 1, \ldots, n$ and U open in X_i. These sets are open in X, hence contained in RHS. Thus LHS \subseteq RHS.

To see that LHS \supseteq RHS, for each i choose a countable base \mathcal{E}_i for X_i. Then $\{\bigotimes_1^n E_i : E_i \in \mathcal{E}_i\}$ is a countable base for X, and is contained in LHS. Every open set in X is a countable union from this base, hence is a member of LHS. This suffices because RHS is generated by the open sets in X. \qed