Implicit functions

Given a system of m independent linear equations in n variables x_1, \ldots, x_n, linear algebra tells us that we can solve for m of the variables in terms of the others. More precisely, if A is the coefficient matrix, then we can solve uniquely for x_{j_1}, \ldots, x_{j_m} if and only if the columns j_1, \ldots, j_m of A are linearly independent. For example, if $A = (B \ C)$ is the block matrix decomposition with C square (of size $m \times m$), and if C is invertible, then for any $c \in \mathbb{R}^m$ the equation $Bx + Cy = c$ can be solved uniquely for y as a function of x, namely $y = C^{-1}(c - Bx)$.

In the case of a nonlinear system of equations, the situation is similar, and is controlled by the derivative. To see what solving for y in terms of x entails, let f be a function from a subset of \mathbb{R}^n into \mathbb{R}^m, with $m < n$ (the case $m = n$ is handled by the Inverse Function Theorem). Put $k = n - m$, and identify \mathbb{R}^n with $\mathbb{R}^k \times \mathbb{R}^m$, so that a typical element is regarded as an ordered pair (x, y) with $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^m$. We want to solve an equation of the form $f(x, y) = c$ for y in terms of x. In general, the best we can hope for is to solve for y in terms of x locally, so that near any sufficiently nice point in the domain of f, the set of solutions of $f(x, y) = c$ should be the graph $\{(x, g(x)) : x \in \text{dom } g\}$ of a function g.

Here is the main result:

Theorem 1 (Implicit Function Theorem). Let $E \subset \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^m$, let $f : E \to \mathbb{R}^m$ be C^1, and let $(a, b) \in E$. Write $f'(a, b) = (A \ B)$ where B is $m \times m$, and assume that B is invertible. Put $f(a, b) = c$. Then there exist open sets $U \subset E$ and $W \subset \mathbb{R}^k$ such that $(a, b) \in U$ and $U \cap f^{-1}(c)$ is the graph of a C^1 function $g : W \to \mathbb{R}^m$.

Note that, once we have proved the above theorem, if we wanted to we could find open sets $W_0 \subset W$ and $V_0 \subset \mathbb{R}^m$ such that: (1) $W_0 \times V_0 \subset U$, (2) for all $x \in W_0$ there exists a unique $y = g_0(x) \in V_0$ such that $f(x, y) = c$, and (3) the resulting function $g_0 : W_0 \to V_0$ is C^1. This is how the Implicit Function Theorem is sometimes phrased.

Proof. Define $\phi : E \to \mathbb{R}^n$ by $\phi(x, y) = (x, f(x, y))$. Then ϕ is C^1, and

$$
\phi'(a, b) = \begin{pmatrix} I & 0 \\ A & B \end{pmatrix}
$$

is invertible. By the Inverse Function Theorem there exist open sets $U \subset E$ and $V \subset \mathbb{R}^n$ such that $(a, b) \in U$, ϕ maps U 1-1 onto V, and $\phi^{-1} : V \to U$ is C^1.

Put

$$
W = \{ x \in \mathbb{R}^k : (x, c) \in V \}.
$$

Then $a \in W$, and W is open because V is. Define $g : W \to \mathbb{R}^m$ by

$$
g(x) = \pi_2 \circ \phi^{-1}(x, c),
$$

where $\pi_2 : \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^m$ is the projection.
where \(\pi_2 : \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^m \) is the projection onto the second coordinate (i.e., \(\pi_2(x, y) = y \)). Then \(g \) is \(C^1 \) since \(\phi^{-1} \) is (and \(\pi_2 \) is linear). By construction, for all \((x, y) \in U \) we have both
\[
x \in W \quad \text{and} \quad y = g(x)
\]
if and only if \((x, y) = \phi^{-1}(x, c)\), equivalently \(f(x, y) = c \). Thus \(U \cap f^{-1}(c) \) is the graph of \(g \).

In the above statement of the Implicit Function Theorem, there is nothing magical about our choice of the identification of \(\mathbb{R}^n \) with \(\mathbb{R}^k \times \mathbb{R}^m \), namely with the "\(\mathbb{R}^k \)-variable" being \((x_1, \ldots, x_k)\):

Corollary 2. Let \(E \subset \mathbb{R}^n \), \(f : E \to \mathbb{R}^m \), and \(a \in E \). Assume that \(f \) is \(C^1 \). If columns \(j_1, \ldots, j_m \) of \(f'(a) \) are linearly independent, then we can solve the equation \(f(x) = c \) for \(x_{j_1}, \ldots, x_{j_m} \) as a \(C^1 \)-function of the remaining variables.

Proof. Just compose \(f \) with a rearrangement of coordinates and apply the Implicit Function Theorem.

The Implicit Function Theorem allows us to solve \(f(x, y) = c \) as \(y = g(x) \) for a \(C^1 \)-function \(g \). The following result shows how to compute \(g' \) in terms of \(f' \):

Proposition 3. With the notation of the Implicit Function Theorem,
\[
g'(a) = -B^{-1}A.
\]

Proof. Define \(h : W \to E \) by \(h(x) = (x, g(x)) \). Then \(h \) is differentiable, and
\[
h'(a) = \begin{pmatrix} I \\ g'(a) \end{pmatrix}.
\]
Since \(f \circ h \) is constant, we have
\[
0 = (f \circ h)'(a)
= f'(h(a))h'(a)
= f'(a, b) \begin{pmatrix} I \\ g'(a) \end{pmatrix}
= (A \quad B) \begin{pmatrix} I \\ g'(a) \end{pmatrix}
= A + Bg'(a),
\]
and the result follows by solving for \(g'(a) \).

The main idea of the above proof can be expressed loosely as follows: differentiating both sides of the equation \(f(x, g(x)) = c \) with respect to \(x \) gives
\[
\frac{\partial f}{\partial x}(x, g(x)) + \frac{\partial f}{\partial y}(x, g(x))g'(x) = 0,
\]
and we can solve for \(g'(x) \). This can’t be quite right, though, because we haven’t bothered to define partial derivatives with respect to a “chunk” of variables. This could be put on a firm footing, but I didn’t think it was worth it.
Example 4. Consider the system
\[\begin{align*}
 u^5 + xv^2 - y + w &= 0 \\
v^5 + yu^2 - x + w &= 0 \\
w^4 + y^5 - x^4 &= 1
\end{align*} \]
of 3 equations in the 5 real variables \(x, y, u, v, w\).
Define \(f: \mathbb{R}^5 \rightarrow \mathbb{R}^3\) by
\[f(x, y, u, v, w) = (u^5 + xv^2 - y + w, v^5 + yu^2 - x + w, w^4 + y^5 - x^4) \]
Then \(f\) is \(C^1\), and
\[f'(x, y, u, v, w) = \begin{pmatrix}
v^2 & -1 & 5u^4 & 2xv & 1 \\
-1 & u^2 & 2yu & 5v^4 & 1 \\
-4x^3 & 5y^4 & 0 & 0 & 4w^3
\end{pmatrix} \]
We have
\[f(1, 1, 1, 1, -1) = (0, 0, 1), \]
and
\[f'(1, 1, 1, 1, -1) = \begin{pmatrix}
1 & -1 & 5 & 2 & 1 \\
-1 & 1 & 2 & 5 & 1 \\
-4 & 5 & 0 & 0 & -4
\end{pmatrix} \]
Since the matrix
\[\begin{pmatrix}
5 & 2 & 1 \\
2 & 5 & 1 \\
0 & 0 & -4
\end{pmatrix} \]
is invertible, we can apply the Implicit Function Theorem to conclude that there exist \(r > 0\) and \(C^1\)-functions \(h, k, l : B_r(1, 1) \rightarrow \mathbb{R}\) such that
\[h(1, 1) = 1, \quad k(1, 1) = 1, \quad l(1, 1) = -1, \]
and
\[\begin{align*}
h(x, y)^5 + xk(x, y)^2 - y + l(x, y) &= 0 \\
k(x, y)^5 + yh(x, y)^2 - x + l(x, y) &= 0 \\
l(x, y)^4 + y^5 - x^4 &= 1 \quad \text{for all } (x, y) \in B_r(1, 1).
\end{align*} \]
Moreover, we have
\[\begin{pmatrix}
5 & 2 & 1 \\
2 & 5 & 1 \\
0 & 0 & -4
\end{pmatrix}^{-1} \begin{pmatrix}
1 & -1 \\
-1 & 1 \\
-4 & 5
\end{pmatrix} = \begin{pmatrix}
-4/21 & 13/84 \\
10/21 & -43/84 \\
-1 & 5/4
\end{pmatrix}, \]
so
\[\frac{\partial u}{\partial x}(1, 1) = -4 \quad \frac{\partial u}{\partial y}(1, 1) = 13 \]
\[\frac{\partial v}{\partial x}(1, 1) = 10 \quad \frac{\partial v}{\partial y}(1, 1) = -43 \]
\[\frac{\partial w}{\partial x}(1, 1) = -1 \quad \frac{\partial w}{\partial y}(1, 1) = 5 \]