Measurable functions

Notation and Terminology. Thoughout this section X will denote a Euclidean space.

Definition 1. If $A \in \mathcal{M}$, then $f : A \to \mathbb{R}$ is measurable if
\[
\{x : f(x) > a\} \in \mathcal{M} \quad \text{for all } a \in \mathbb{R}.
\]

When we say a function f is measurable without specifying its domain, by default we assume it is defined on all of X. If B is a measurable subset of $\text{dom } f$, we say f is measurable on B if $f|B$ is measurable.

Note that if $A \in \mathcal{M}$ and $f : A \to \mathbb{R}$, then f is measurable if and only if the extension of f to X obtained by putting $f = 0$ on A^c is a measurable function. We often find it convenient to tacitly extend f in this way. Thus without loss of generality we can develop the general theory of measurable functions in the context of functions from X to \mathbb{R}.

Observation 2. If $A, B \in \mathcal{M}$ then f is measurable on $A \cup B$ if and only if it is measurable on both A and B. In particular, $f : X \to \mathbb{R}$ is measurable if and only if $f^{-1}(\infty), f^{-1}(-\infty) \in \mathcal{M}$ and f is measurable on $f^{-1}(\mathbb{R})$.

Lemma 3. The following are equivalent:

1. f is measurable;
2. $\{x : f(x) \leq a\} \in \mathcal{M}$ for all $a \in \mathbb{R}$;
3. $\{x : f(x) \geq a\} \in \mathcal{M}$ for all $a \in \mathbb{R}$;
4. $\{x : f(x) < a\} \in \mathcal{M}$ for all $a \in \mathbb{R}$.

Proof. This follows from the equalities
\[
[-\infty, a] = (a, \infty)^c \\
[a, \infty] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, \infty\right) \\
[-\infty, a) = [a, \infty)^c.
\]

Lemma 4. If f is real-valued then the following are equivalent:

1. f is measurable;
2. $f^{-1}(a, b) \in \mathcal{M}$ for all $a, b \in \mathbb{R}$ with $a < b$;
3. $f^{-1}(A) \in \mathcal{M}$ for all open $A \subset \mathbb{R}$;
4. $f^{-1}(A) \in \mathcal{M}$ for all $A \in \mathcal{B}$.
Proof. (1) \(\implies\) (2). This follows from the equality \((a, b) = (a, \infty) \cap (-\infty, b)\).
(2) \(\implies\) (3). Every open subset of \(\mathbb{R}\) is a countable union of open intervals.
(3) \(\implies\) (iv) It suffices to show that the family
\[A := \{A \subset \mathbb{R} : f^{-1}(A) \in \mathcal{M}\}\]
is a \(\sigma\)-algebra. First, \(\emptyset \in A\) since \(\emptyset\) is open. If \(A \in A\) then
\[f^{-1}(A^c) = f^{-1}(A)^c \in \mathcal{M},\]
so \(A^c \in A\). If \(A_1, A_2, \ldots \in A\) then
\[f^{-1}\left(\bigcup_i A_i\right) = \bigcup_i f^{-1}(A) \in \mathcal{M},\]
so \(\bigcup_i A_i \in A\).
(iv) \(\implies\) (1) This is immediate since \((a, \infty) \in \mathcal{B}\) for all \(a \in \mathbb{R}\). \qed

Corollary 5. Let \(f : X \to \mathbb{R}\).

1. If \(f\) is continuous then \(f\) is measurable.
2. If \(f\) is measurable and \(g : \mathbb{R} \to \mathbb{R}\) is continuous then \(g \circ f\) is measurable.

Proof. (1) If \(A \subset \mathbb{R}\) is open then \(f^{-1}(A)\) is open, hence measurable.
(2) If \(A \subset \mathbb{R}\) is open then \(g^{-1}(A)\) is open, so
\[(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A)) \in \mathcal{M}.\] \qed

Definition 6. The positive and negative parts of \(x \in \mathbb{R}\) are
\[x^+ := \max\{x, 0\}\] and \(x^- := \max\{-x, 0\}\).

Observation 7. With the above notation,

1. \(x^+, x^- \geq 0;\)
2. \(x = x^+ - x^-;\)
3. \(x^+x^- = 0;\)
4. \(|x| = x^+ + x^-;\)
5. \(x^- = (-x)^+;\)
6. \((cx)^+ = \begin{cases} cx^+ & \text{if } c \geq 0 \\ -cx^- & \text{if } c < 0 \end{cases}, \quad \text{and} \quad (cx)^- = \begin{cases} cx^- & \text{if } c \geq 0 \\ -cx^+ & \text{if } c < 0 \end{cases}.\)

Moreover, the pair \((x^+, x^-)\) is uniquely determined by properties (1)–(3).

Definition 8. Let \(f : X \to \mathbb{R}\). The positive and negative parts of \(f\) are the functions \(f^+, f^- : X \to \mathbb{R}\) defined by
\[f^+(x) = f(x)^+ \quad \text{and} \quad f^-(x) = f(x)^-.\]

Corollary 9. If \(f : X \to \mathbb{R}\) is measurable, then so are

1. \(cf\) for all \(c \in \mathbb{R},\)
2. \(f^n\) for all \(n \in \mathbb{N},\) and
3. \(f^+, f^-, \text{ and } |f|\).
Proof. Without loss of generality f is real-valued, so the result follows from Corollary 5. □

Proposition 10. If f and g are measurable, then so are $f + g$ and fg (where we assume $\infty - \infty$ does not occur).

Proof. For the first, if $a \in \mathbb{R}$ then
\[(f + g)^{-1}(a, \infty) = \bigcup_{r \in \mathbb{Q}} \left(f^{-1}(r, \infty] \cap g^{-1}(a - r, \infty] \right) \in \mathcal{M}. \]

For fg, note that on $g^{-1}(\pm \infty)$ we have
\[fg = \begin{cases} g & \text{on } f^{-1}(0, \infty] \\ -g & \text{on } f^{-1}[-\infty, 0) \\ 0 & \text{on } f^{-1}(0) \end{cases}, \]
so it suffices to show fg is measurable on $g^{-1}(\mathbb{R})$. Similarly, it suffices to consider $f^{-1}(\mathbb{R})$, hence $f^{-1}(\mathbb{R}) \cap g^{-1}(\mathbb{R})$. But on this set,
\[fg = \frac{1}{4}((f + g)^2 - (f - g)^2), \]
so the result follows from Corollary 9. □

Proposition 11. If f_1, f_2, \ldots are measurable, then so are
\[\sup f_n, \quad \inf f_n, \quad \limsup f_n, \quad \liminf f_n, \quad \text{and} \quad \lim f_n \quad \text{if this exists (in } \mathbb{R}). \]

Proof. If $a \in \mathbb{R}$ then
\[\sup f_n(x) > a \iff \text{there exists } n \text{ such that } f_n(x) > a \iff x \in \bigcup_n f_n^{-1}(a, \infty], \]
so $\{x : \sup f_n(x) > a\} \in \mathcal{M}$. Similarly for inf, hence lim sup and lim inf.\(^1\)

For the last part, if $f_n \to f$ pointwise then $f = \limsup f_n$ is measurable. □

Definition 12. $P(x)$ almost everywhere, or a.e., means $\{x : P(x) \text{ is false}\}$ is a null set. Here $P(x)$ is a propositional function\(^2\) defined on X. $P(x)$ a.e. x is sometimes used to avoid ambiguity, and P a.e. when confusion seems unlikely.

Since every subset of a null set is null, we have P a.e. if and only if there exists a null set A such that $P(x)$ for all $x \not\in A$.

Very often our $P(x)$ will be “$f(x) = 0$”, and then we’ll say $f = 0$ a.e. Note that we have to be careful when negating this condition: it won’t do to say $\neg f \neq 0$ a.e., because this could mean that for a.e. x we have $f(x) \neq 0$. We’ll usually say something like “$f \neq 0$ on a set of positive measure” to mean that it’s false that $f = 0$ a.e.

\(^1\) Recall that $\limsup f_n = \inf_k \sup_{n \geq k} f_n$, and similarly for \liminf.

\(^2\) That is, for each $x \in X$ the value $P(x)$ is a mathematical proposition — a statement which is either true or false.
Observation 13. Since a countable union of null sets is null, if for all \(n \in \mathbb{N}\) we have \(P_n(x)\) a.e. \(x\) (with the complementary null set depending upon \(n\)), we can conclude that a.e. \(x\) we have \(P_n(x)\) for all \(n \in \mathbb{N}\) (so that now the null set is the same for all \(n\)).

Proposition 14. If \(f\) is measurable and \(f = g\) a.e., then \(g\) is measurable.

Proof. Suppose \(m(A) = 0\) and \(f(x) = g(x)\) for all \(x \notin A\). Then \(g\) is trivially measurable on \(A\), and is measurable on \(A^c\) since \(f\) is. \(\square\)

It’ll be useful to keep in mind that the Lebesgue integral is a generalization of the Riemann integral. Much of the development of the Riemann integral can be based upon step functions. Here’s the analogue for Lebesgue integration:

Definition 15. A simple function is a linear combination of characteristic functions\(^3\) of measurable sets.

Thus a simple function has the form \(\sum_{i=1}^{n} c_i \chi_{A_i}\), where \(c_1, \ldots, c_n \in \mathbb{R}\) and \(A_1, \ldots, A_n \in \mathcal{M}\). It’s frequently useful to assume that the \(A_i\)’s are disjoint — this can always be arranged. Simple functions can be characterized as measurable real-valued functions with finite range. Also, simple functions suffice to generate all measurable functions in the following sense:

Theorem 16. If \(f\) is measurable, then there exists a sequence \((\phi_n)\) of simple functions such that \(|\phi_n| \leq |f|\) and \(\phi_n \to f\) (in \(\mathbb{R}\)). Moreover, if \(f \geq 0\) we can take \(0 \leq \phi_n \uparrow f\).

Proof. First assume \(f \geq 0\). For each \(n \in \mathbb{N}\) put

\[
\phi_n = \sum_{k=0}^{2^n - 1} k2^{-n}\chi_{f^{-1}[k2^{-n},(k+1)2^{-n})} + n\chi_{f^{-1}[n,\infty]}
\]

Then \((\phi_n)\) is an increasing sequence of nonnegative simple functions. To see that \(\phi_n \to f\) pointwise, fix \(x \in X\). If \(f(x) = \infty\) then

\[
\phi_n(x) = n \to f(x),
\]

while if \(f(x) < \infty\) then for all \(n > f(x)\) we have

\[
|f(x) - \phi_n(x)| < 2^{-n} \to 0.
\]

Now remove the restriction \(f \geq 0\). Apply the first part to \(f^+\) and \(f^-\), getting simple functions \(\psi_n\) and \(\xi_n\) such that \(\psi_n \to f^+\) and \(\xi_n \to f^-\). Then each \(\psi_n - \xi_n\) is a simple function, and

\[
\psi_n - \xi_n \to f^+ - f^- = f.
\]

By construction we have

\[
|\psi_n - \xi_n| = \psi_n + \xi_n \leq f^+ + f^- = |f|.
\]

Definition 17. A Borel function is a function \(f : X \to \overline{\mathbb{R}}\) such that

\[
\{x : f(x) > a\} \in \mathcal{B} \quad \text{for all } a \in \mathbb{R}.
\]

\(^3\)The characteristic function of a set \(A\) is the function \(\chi_A\) taking the value 1 on \(A\) and 0 on the complement.
Example 18 (Cantor function). This example constructs the Cantor function, which will be an increasing continuous function \(f : [0, 1] \to [0, 1] \) taking the Cantor set \(C \) onto \([0, 1] \). Let \(F_0 = [0, 1] \), and for \(n \geq 1 \) let \(F_n \) be the closed set remaining after removing the open middle third from every closed interval comprising \(F_{n-1} \). Then the Cantor set \(C \) is \(\bigcap_n F_n \).

Our aim is to define \(f : C \to [0, 1] \) as follows: to each \(x \in C \) we’ll associate a sequence \((x_n)\) of 0’s and 1’s, and we’ll put \(f(x) = \sum_{n=1}^\infty x_n 2^{-n} \). We proceed to define \(x_n \): first find the interval \(I \) in \(F_{n-1} \) which contains \(x \). At the \(n \)th step in the construction of \(C \), \(I \) is split into 2 subintervals, one of which is to the left of the other. Put \(x_n \) equal to 0 if \(x \) is in the left-hand subinterval, and 1 if \(x \) is in the right-hand subinterval. Note that every sequence of 0’s and 1’s occurs in this way, and \(0.x_1x_2 \ldots \) is (one of) the binary (that is, base 2) expansion(s) of \(f(x) \). Thus \(f \) maps \(C \) onto \([0, 1] \).

Claim: \(f \) is increasing. Let \(x, y \in C \) with \(x < y \), and let \((x_n)\) and \((y_n)\) be the associated sequences as above. There exists \(k \in \mathbb{N} \) such that:

- \(x_n = y_n \) for \(n < k \),
- \(x_k = 0 \), and
- \(y_k = 1 \)

Then

\[
f(x) = \sum_{n<k} x_n 2^{-n} + \sum_{n>k} x_n 2^{-n}
\leq \sum_{n<k} x_n 2^{-n} + \sum_{n>k} 2^{-n}
= \sum_{n<k} x_n 2^{-n} + 2^{-k}
\leq \sum_{n<k} x_n 2^{-n} + 2^{-k} + \sum_{n>k} y_n 2^{-n}
= f(y).
\]

Thus \(f \) is increasing.

If \((x,y)\) is one of the open intervals removed at the \(k \)th step in the construction of \(C \), then for all \(n > k \) we have \(x_n = 1 \) and \(y_n = 0 \), so

\[
f(x) = \sum_{n<k} x_n 2^{-n} + \sum_{n>k} 2^{-n}
= \sum_{n<k} x_n 2^{-n} + 2^{-k}
= \sum_{n<k} x_n 2^{-n} + 2^{-k} + \sum_{n>k} y_n 2^{-n}
= f(y).
\]

Thus for each open interval \((x,y)\) removed to form \(C \) we have \(f(x) = f(y) \). Consequently, there is exactly one extension of \(f \) to an increasing function on \([0, 1]\), namely let it be constant on the closure \([x,y]\) of each of the open intervals \((x,y)\) removed to form \(C \). We denote this extension also by \(f \). This is the Cantor function.
Since \(f : [0, 1] \to [0, 1] \) is increasing and onto, it is continuous. One of the interesting properties of this function is that it maps the null set \(C \) onto the set \([0, 1]\) of measure 1.

Example 19 (Modified Cantor function). In this example we modify the Cantor function to get a strictly increasing continuous function mapping the Cantor set onto a set of positive measure, and from this we prove the existence of a measurable set which is non-Borel. Let \(f : [0, 1] \to [0, 1] \) be the Cantor function, and define \(g : [0, 1] \to \mathbb{R} \) by \(g(x) = x + f(x) \). This is the modified Cantor function.

\(g \) is continuous since \(f \) is, and is strictly increasing since \(f \) is increasing. We have \(g(0) = 0 \) and \(g(1) = 2 \) because \(f(0) = 0 \) and \(f(1) = 1 \). Thus \(g \) maps \([0, 1]\) 1-1 onto \([0, 2]\), and has continuous inverse \(g^{-1} : [0, 2] \to [0, 1] \). We have \(m(g(C)) = 1 \) (exercise). Thus \(g(C) \) contains a nonmeasurable set \(A \). Put \(B = g^{-1}(A) \). Then \(B \subset C \), which is a null set, so \(B \) is measurable. If \(B \) were Borel, then the image \(g(B) = A \) under the homeomorphism \(g \) would also be Borel. But \(A \) is not even measurable, so \(B \) is not Borel.

We can use this example to illustrate another pathology: the characteristic function \(\chi_B \) is measurable, and \(g^{-1} \) is continuous, but the composition

\[
\chi_B \circ g^{-1} = \chi_A
\]

is nonmeasurable.