Borel sets — Exercises

1. Let $A \in \mathcal{M}$. Prove that

 $$m(A) = \sup\{m(K) : K \text{ compact, } K \subset A\}.$$

2. Let $A \subset \mathbb{R}^n$, and suppose that for all $\epsilon > 0$ there exist a closed set C such that $C \subset A$ and $m^*(A \setminus C) < \epsilon$. Prove that A is measurable.

3. Define an equivalence relation \sim on \mathbb{R} by

 $$x \sim y \text{ if and only if } x - y \in \mathbb{Q}.$$

 By the Axiom of Choice, there exists a set A consisting of exactly one element of each equivalence class. Then $\mathbb{R} = \bigcup_{x \in \mathbb{Q}} (A + x)$, and for distinct $x, y \in \mathbb{Q}$ we have $(A + x) \cap (A + y) = \emptyset$. You do not have to prove any of this so far.

 (a) Prove that $m^*(A) > 0$.

 (b) Prove that if $E \subset A$ and E is measurable, then $m(E) = 0$. Hint: consider compact subsets of E.

 (c) Prove that if B is a measurable subset of \mathbb{R} with $m(B) > 0$, then B has a nonmeasurable subset. Hint:

 $$B = \bigcup_{x \in \mathbb{Q}} (B \cap (A + x)),$$

 where A is the same as above.