Boxes — Exercises

1. Prove that every open subset of \mathbb{R}^n is a countable union of open boxes. Hint: consider open cubes with rational centers and sides.

2. Prove that every open subset of \mathbb{R}^n is a countable union of closed cubes with disjoint interiors. Hint: consider for each $j \in \mathbb{N}$ the family \mathcal{C}_j of closed cubes of side 2^{-j} with vertices in $(2^{-j}\mathbb{Z})^n$.

3. Prove that every open subset of \mathbb{R}^n is a countable disjoint union of boxes. Hint: consider for each $j \in \mathbb{N}$ the family \mathcal{D}_j of boxes of the form
\[\{x \in \mathbb{R}^n : a_i \leq x_i < a_i + 2^{-j}, i = 1, \ldots, n\} \] for some $a \in (2^{-j}\mathbb{Z})^n$.