Mean value — Exercises

1. Verify that the function \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) defined by
 \[
 f(x, y, z) = \left(\frac{2x}{\log(z^2 + 1)} e^{-x^2} \sin yz \right)
 \]
 is \(C^1 \).

2. Define \(f : \mathbb{R} \to \mathbb{R}^2 \) by \(f(x) = (\cos x, \sin x) \). Prove that there does not exist \(z \) between 0 and \(2\pi \) such that
 \[
 f(2\pi) - f(0) = 2\pi f'(z).
 \]

3. Define \(f : \mathbb{R} \to \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
 \end{cases}
 \]
 Prove that \(f \) is differentiable on \(\mathbb{R} \), but \(f' \) is discontinuous at 0.

4. Let \(U = \{(x, y) \in \mathbb{R}^2 : y \neq 0\} \), and define \(q : U \to \mathbb{R} \) by
 \[
 q(x, y) = \frac{x}{y}.
 \]
 (a) Use the partial derivatives to help show that \(q \) is differentiable.
 (b) Find a formula for \(q'(a, b)(x, y) \) for \((a, b) \in U, (x, y) \in \mathbb{R}^2 \).
 (c) Use the formula you found in part (b) together with the Chain Rule to derive a “quotient rule” for
 \[
 \left(\frac{f}{g} \right)'(a)x
 \]
 where \(f, g : E \to \mathbb{R}, E \subset X, a \in E^o \), both \(f \) and \(g \) are differentiable at \(a \), and \(0 \notin \text{ran } g \).

5. Let \(U \subset \mathbb{R}^n \) be open, and let \(f : U \to \mathbb{R} \). Suppose every partial derivative \(D_i f \) is bounded on \(U \). Prove that \(f \) is continuous on \(U \). Hint: the Mean Value Theorem itself does not apply directly — instead, you should use the technique of the proof.

6. Let \(U \subset X \) be open and connected and \(f : U \to Y \) be differentiable. Prove that if \(f'(x) = 0 \) for all \(x \in U \) then \(f \) is constant.
 Hint: Fix \(a \in U \), and consider the set \(V := \{x \in U : f(x) = f(a)\} \).