MAT 473 HOMEWORK 9

JOHN QUIGG

1. For each $f \in L^1(\mathbb{R})$ define $\Psi(f) : \mathbb{R} \to \mathbb{R}$ by

$$\Psi(f)(t) = \int_{-\infty}^{\infty} f(x) \sin(xt) \, dx.$$

(a) Prove that if $g_n \to f$ in L^1 then $\Psi(g_n) \to \Psi(f)$ uniformly on \mathbb{R}.

(b) Prove that for every $f \in L^1(\mathbb{R})$,

$$\lim_{t \to \infty} \Psi(f)(t) = 0.$$

Hint: first take f to be the characteristic function of a bounded interval. You may use simple change-of-variables rules for integrals.

2. Find a reference somewhere (any good book on real analysis should do) that talks about "fat Cantor sets", that is, nowhere dense compact subsets of \mathbb{R} with positive measure, and briefly describe the construction (you need not strive for maximum generality — it is enough to have at least one such set). If A is a fat Cantor set, is the characteristic function of A Riemann integrable? Why or why not?

3. Give examples on $[0, 1]$ (and prove that they have the stated properties) of each of the following phenomena:

(a) a function f and a continuous function g such that $f = g$ a.e. and f is nowhere continuous;

(b) a function p which is continuous a.e. such that there is no continuous function q with $p = q$ a.e.