Exercise 1. Let \(\sigma : \mathbb{R} \to \mathbb{R} \) be a solution of the differential equation
\[
\sigma'' = -\sigma
\]
such that \(\sigma(0) = 0 \) and \(\sigma'(0) = 1 \). Put \(\kappa = \sigma' \). Prove that for all \(x \in \mathbb{R} \) we have
\[
(\sigma(x))^2 + (\kappa(x))^2 = 1.
\]

Exercise 2. With the notation from the preceding exercise, let
\[
sin = \sigma \quad \text{and} \quad \cos = \kappa,
\]
and use the customary notation for these two trig functions. Let \(f \) be any solution of the differential equation (1) above. Prove that
\[
f = f'(0) \sin + f(0) \cos.
\]
Hint: Show that both \(f \sin + f' \cos \) and \(f \cos - f' \sin \) are constant. Consider \(\sin \) times the 1st plus \(\cos \) times the 2nd.

Exercise 3. Prove the following identities:

(a) \(\sin(-x) = -\sin x \);
(b) \(\cos(-x) = \cos x \);
(c) \(\sin(x + y) = \sin x \cos y + \cos x \sin y \);
(d) \(\cos(x + y) = \cos x \cos y - \sin x \sin y \);
(e) \(\sin(2x) = 2 \sin x \cos x \);
(f) \(\cos(2x) = \cos^2 x - \sin^2 x \);

Exercise 4. Prove that there exists \(x > 0 \) such that \(\cos x = 0 \).

Hint: Suppose not, and deduce that:

(a) for all \(x > 0 \) we have \(0 < \cos x < 1 \);
(b) putting \(a = \cos 1 \), for all \(n \in \mathbb{N} \) we have \(\cos(2^n) \leq a^{2^n} \);
(c) there exists \(t > 0 \) such that \(\cos t < 1/2 \);
(d) for the above \(t \) we have \(\cos(2t) < 0 \).

Exercise 5. Prove that the set \(\{ x > 0 : \cos x = 0 \} \) has a minimum.

Date: July 10, 2006.
Exercise 6. Let \(\pi \) denote 2 times the minimum from the preceding exercise. Prove the following identities:

(a) \(\sin \left(x + \frac{\pi}{2} \right) = \cos x; \)
(b) \(\cos \left(x + \frac{\pi}{2} \right) = -\sin x; \)
(c) \(\sin(x + \pi) = -\sin x; \)
(d) \(\cos(x + \pi) = -\cos x; \)
(e) \(\sin(x + 2\pi) = \sin x; \)
(f) \(\cos(x + 2\pi) = \cos x. \)

Exercise 7. Prove that the function \(\cos \) maps the interval \([0, \pi]\) 1-1 onto the interval \([-1, 1]\).

Exercise 8. Let

\[A = \left\{ \frac{(2n + 1)\pi}{2} : n \in \mathbb{Z} \right\}, \]

and define \(\tan : \mathbb{R} \setminus A \to \mathbb{R} \) by

\[\tan = \frac{\sin}{\cos}. \]

Prove:

(a) \(\frac{d}{dx} \tan x = \frac{1}{\cos^2 x}. \)

(b) For all \(x \in A \) we have \(\tan(x + \pi) = \tan x. \)

(c) \(\tan \) is strictly increasing on the interval \((-\pi/2, \pi/2).\)

(d) \(\tan \) has range \(\mathbb{R}. \)