Exercise 1. Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$, and $t \in A$. Suppose t is a cluster point of A. Prove that f is continuous at t if and only if $\lim_{x \to t} f(x) = f(t)$.

Exercise 2. Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$, and $t \in A$. Prove that if t is not a cluster point of A, then f is continuous at t.

Exercise 3. Let $A \subset \mathbb{R}$, $f: A \to A$, and $s, t \in A$. Define a sequence (x_n) inductively by

$$x_n = \begin{cases} s & \text{if } n = 1 \\ f(x_{n-1}) & \text{if } n > 1. \end{cases}$$

Assume that f is continuous and that $x_n \to t$. Prove that $f(t) = t$.

Exercise 4. Let $A \subset \mathbb{R}$, and let f and g be uniformly continuous functions from A to \mathbb{R}. Prove that $f + g$ is uniformly continuous.

Exercise 5. Let $A \subset \mathbb{R}$, and let f and g be uniformly continuous functions from A to \mathbb{R}. Suppose that both f and g are bounded. Prove that fg is uniformly continuous.

Exercise 6. Prove that x is uniformly continuous on \mathbb{R}, but x^2 is not.

Exercise 7. Let $f: \mathbb{R} \to (0, \infty)$ be continuous, and assume that

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$$

Prove that f has a maximum.

Hint: show that there exists $a > 0$ such that for all $x \in \mathbb{R}$, if $|x| > a$ then $f(x) < f(0)$.

Exercise 8. Let $f: [0, 1] \to [0, 1]$ be continuous. Prove that there exists $c \in [0, 1]$ such that $f(c) = c$.

Exercise 9. (Roots) Use the Intermediate Value Theorem to prove that for every $n \in \mathbb{N}$, every nonnegative real number has a unique nth root.

Exercise 10. Prove that for every $n \in \mathbb{N}$, the function $x^{1/n}$ on $[0, \infty)$ is continuous.