MAT 472 HOMEWORK 2

1. Let

\[E = (\mathbb{Q} \cap [0, 1]) \cup \{2 + \frac{1}{n} : n \in \mathbb{N}\} \cup [4, 5) \cup (5, 6). \]

Find \(\bar{E} \) and \(E' \).

2. Let \(A \) be a subset of a metric space \(X \). The interior of \(A \), denoted \(A^\circ \), is defined as the union of the family of all open subsets of \(X \) which are contained in \(A \). Prove that \(x \in A^\circ \) if and only if there exists \(\epsilon > 0 \) such that \(B_\epsilon(x) \subseteq A \).

3. Let \(A \) be a subset of a metric space \(X \). The boundary of \(A \), denoted \(\partial A \), is defined as \(\bar{A} \setminus A^\circ \). Prove that \(x \in \partial A \) if and only if for all \(\epsilon > 0 \) we have both \(B_\epsilon(x) \cap A \neq \emptyset \) and \(B_\epsilon(x) \setminus A \neq \emptyset \).