Exercise 19.1. (Inserting parentheses) Let $\sum_{n=1}^{\infty} a_n$ converge, and let (n_1, n_2, n_3, \ldots) be a strictly increasing sequence of positive integers. Put $n_0 = 0$. For each $j \in \mathbb{N}$ define

$$b_j = a_{n_{j-1}+1} + \cdots + a_{n_j}.$$

Prove that $\sum_{j=1}^{\infty} b_j$ converges and

$$\sum_{j=1}^{\infty} b_j = \sum_{n=1}^{\infty} a_n.$$

Exercise 19.2.

(a) Prove that the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \int_{n}^{n+1} \frac{1}{x} \, dx \right)$$

converges. Hint: show that

$$0 \leq \frac{1}{n} - \int_{n}^{n+1} \frac{1}{x} \, dx \leq \frac{1}{n} - \frac{1}{n+1}$$

for all $n \in \mathbb{N}$.

(b) Use the result of part (a) to show that Euler’s constant

$$\lim_{k \to \infty} \left(\sum_{n=1}^{k} \frac{1}{n} - \log(k+1) \right)$$

exists. Hint: what are the partial sums of the series from part (a)?

Exercise 19.3. Show that the series

$$\sum_{n=2}^{\infty} \frac{3n^3 - 5n + 1}{7n^4 - 6n^2 + 3n - 8}$$

diverges.

Exercise 19.4. In each part, determine whether the series converges:

(a)

$$\sum_{n=1}^{\infty} \frac{2 + \sin n}{n^2}$$

(b)

$$\sum_{n=1}^{\infty} \frac{2 + \cos n}{\sqrt{n}}$$

Exercise 19.5. Let $f : [a, \infty) \to \mathbb{R}$ be integrable on $[a, t]$ for all $t > a$, and suppose $(a_n)_{n=0}^{\infty}$ is a strictly increasing sequence diverging to ∞ such that $a_0 = a$.

(a) Prove that if $\int_{a}^{\infty} f$ converges, then so does the series $\sum_{n=1}^{\infty} \int_{a_{n-1}}^{a_n} f$.

1
(b) Assuming \(f \) is nonnegative, prove the converse of part (a).

Exercise 19.6. Give an example of a continuous\(^1\) nonnegative function \(f \) on \([1, \infty)\) such that \(\int_1^\infty f \) converges but \(f(x) \not\to 0 \) as \(x \to \infty \).

Exercise 19.7. Consider the series \(\sum_{n=1}^\infty a_n \), where
\[
a_n = \begin{cases} 3^{-n} & \text{if } n \text{ is odd} \\ 2^{-n} & \text{if } n \text{ is even}. \end{cases}
\]

(a) Show that the Ratio Test gives no information.
(b) Prove that the Root Test shows that the series converges.

Exercise 19.8. Find all nonzero real numbers \(p \) for which the series \(\sum_{n=1}^\infty p^n n^p \) converges absolutely, converges conditionally, or diverges.

Exercise 19.9. Let \(a_n > 0 \) for all \(n \in \mathbb{N} \). Prove that if \(\sum a_n \) diverges, then so does \(\sum \frac{a_n}{1 + a_n} \).

Exercise 19.10. Does the series
\[
\sum_{n=1}^\infty 2^n e^{-n}
\]
converge?

Exercise 19.11. Does the series
\[
\sum_{n=1}^\infty n^n e^{-n}
\]
converge?

Exercise 19.12. Does the series
\[
\sum_{n=1}^\infty e^{-\log n}
\]
converge?

Exercise 19.13. Does the series
\[
\sum_{n=1}^\infty (\log n)e^{-\sqrt{n}}
\]
converge? (This one’s tricky.)

Exercise 19.14. Does the series
\[
\sum_{n=1}^\infty n! e^{-n}
\]
converge?

\(^1\)but not uniformly so, by a previous exercise!
Exercise 19.15. Does the series
\[\sum_{n=1}^{\infty} n!e^{-n^2} \]
converge?

Exercise 19.16. Does the series
\[\sum_{n=1}^{\infty} \frac{2^n n!}{n^n} \]
converge?

Exercise 19.17. Does the following series converge?
\[\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n} \]

Exercise 19.18. Let \((a_n)\) be a decreasing sequence of positive numbers. Prove that if \(\sum a_n\) converges, then \(na_n \to 0\). Hint: consider partial sums of a sufficiently small tail \(\sum_{k+1}^{\infty} a_n\). (This one’s tricky.)