15. Differentiation

Exercise 15.1. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is differentiable at only one point.

Exercise 15.2. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Prove:

(a) f is differentiable;
(b) f' is discontinuous at 0.

Exercise 15.3. Let $f, g : (a, b) \to \mathbb{R}$ and $a < c < b$. Suppose $f \leq g$ on (a, b), f and g are both differentiable at c, and $f(c) = g(c)$. Use the Critical Point Lemma to prove that $f'(c) = g'(c)$.

Exercise 15.4. Use the Mean Value Theorem to prove that $\sqrt{1 + x} < 1 + \frac{x}{2}$ for all $x > 0$.

Exercise 15.5. Let $f : (a, b) \to \mathbb{R}$ be differentiable. Prove that if f' is bounded, then f is uniformly continuous. Hint: Mean Value Theorem.

Exercise 15.6. Let $f : (a, b) \to \mathbb{R}$ be differentiable. Prove that if f is Lipschitz, then f' is bounded. Hint: Mean Value Theorem.

Exercise 15.7. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^3 + 3x^2 - 36x + 5 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Prove that f is 1-1 on the interval $[-1, 1]$.
(b) Find $(f^{-1})'(5)$.

Exercise 15.8. Let $f : (a, b) \to \mathbb{R}$ and $t \in (a, b)$. Suppose f is continuous at t and differentiable on $(a, b) \setminus \{t\}$, and $\lim_{x \to t} f'(x)$ exists. Prove:

(a) f is differentiable at t.
(b) f' is continuous at t.

Exercise 15.9. (Darboux’s Intermediate Value Theorem) Prove that if $f : (a, b) \to \mathbb{R}$ is differentiable and $a < s < t < b$, then for every m strictly between $f'(s)$ and $f'(t)$ there exists $c \in (s, t)$ such that $f'(c) = m$. Hint: first assume $m = 0$; for the general case consider $g(x) = f(x) - mx$.

Exercise 15.10. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{1}{1 + e^{1/x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Find $f'(0)$. 1
Exercise 15.11. Show that
\[\lim_{x \to \infty} \left(1 + \frac{t}{x} \right)^x = e^t \quad \text{for all } t \in \mathbb{R}. \]

Exercise 15.12. Show that
\[\lim_{x \to \infty} x^{1/x} = 1. \]

Exercise 15.13. Prove that if \(f \) is any rational function then
\[\lim_{x \to \infty} f(x)e^{-x} = 0. \]

Exercise 15.14. Let \(f : (a, b) \to \mathbb{R} \) and \(t \in (a, b) \). Consider the limit
\[(1) \quad \lim_{h \to 0} \frac{f(t + h) - f(t) - f(t - h)}{2h}. \]

(a) Show that if \(f'(t) \) exists then it equals the limit (1).
(b) Find an example where the limit (1) exists, and \(f \) is continuous and nondifferentiable at \(t \).

Exercise 15.15. Let \(f : (a, b) \to \mathbb{R} \) and \(t \in (a, b) \), and assume \(f''(t) \) exists. Prove that
\[f''(t) = \lim_{h \to 0} \frac{f(t + h) - 2f(t) + f(t - h)}{h^2}. \]

Hint: l'Hôpital’s Rule.

Exercise 15.16. Let \(f''(a) > 0 \). Prove that there exist \(c, \delta > 0 \) such that
\[f(x) \geq f(a) + f'(a)(x - a) + c(x - a)^2 \quad \text{if } |x - a| < \delta. \]

Hint: use l'Hôpital’s Rule to show that the fraction
\[\frac{f(x) - f(a) - f'(a)(x - a)}{(x - a)^2} \]
has a positive limit at \(a \).