13. Continuity

Exercise 13.1. In each part, give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) with the indicated property:

(a) \(f \) is discontinuous everywhere;
(b) \(f \) is continuous at only one point.

Exercise 13.2. Define a sequence \((x_n)\) inductively by

\[
x_n = \begin{cases}
2 & \text{if } n = 1 \\
\frac{x_{n-1}}{2} + \frac{1}{x_{n-1}} & \text{if } n > 1
\end{cases}
\]

Assuming the sequence \((x_n)\) converges, find its limit, and prove you are correct.

Exercise 13.3. Let \(f : A \to \mathbb{R} \) and \(t \in A \). Assume that \(f \) is discontinuous at \(t \). Prove that there exists a Cauchy sequence \((x_n)\) in \(A \) for which the image sequence \((f(x_n))\) is not Cauchy.

Exercise 13.4. Let \(f : (a, b) \to \mathbb{R} \) be monotone. Prove that \(f \) has only countably many discontinuities. Hint: for each \(x \in (a, b) \) consider the open interval with endpoints \(f(x-) \) and \(f(x+) \).

Exercise 13.5. Find an example where \(B \subset A \subset \mathbb{R} \), \(f : A \to \mathbb{R} \), and the restriction \(f|B \) is continuous, but \(f \) is not continuous on \(B \).

Exercise 13.6. Let \(A \subset \mathbb{R} \), \(t \in A \), and \(f : A \to \mathbb{R} \). We say \(f \) is continuous from the right at \(t \) if the restriction

\[f \mid (A \cap [t, \infty)) \]

is continuous, and similarly for continuous from the left.

Prove:

(a) \(f \) is continuous from the right at \(t \) if and only if for all \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for all \(x \in A \),

\[t \leq x < t + \delta \quad \text{then} \quad |f(x) - f(t)| < \epsilon. \]

(b) Prove that \(f \) is continuous at \(t \) if and only if it’s continuous from both the right and left at \(t \).

Exercise 13.7. Let \(f : (a, b) \to \mathbb{R} \), and assume that for each \(t \in (a, b) \) the right-hand limit \(f(t+) \) exists. Define \(g : (a, b) \to \mathbb{R} \) by \(g(t) = f(t+) \). Prove that \(g \) is continuous from the right.