ADVANCED CALCULUS I
MAIN RESULTS

JOHN QUIGG

Bolzano-Weierstrass Theorem. Every bounded sequence of real numbers has a convergent subsequence.

Continuity

*Extreme Value Theorem. Every continuous real-valued function on a closed bounded interval has both a maximum and a minimum.

*Intermediate Value Theorem. Every real-valued continuous image of an interval is an interval.

Theorem. Every continuous real-valued function on a closed bounded interval is uniformly continuous.

Theorem. Let I be an interval and $f: I \to \mathbb{R}$. If f is monotone and $f(I)$ is an interval then f is continuous.

Theorem. Every continuous 1-1 real-valued function on an interval is strictly monotone.

Theorem. Every continuous 1-1 real-valued function on an interval has continuous inverse.

Derivatives

Chain Rule. Let $A, B \subset \mathbb{R}$, let $f: A \to B$, let $g: B \to \mathbb{R}$, and let $t \in A$. If f is differentiable at t and g is differentiable at $f(t)$, then $g \circ f$ is differentiable at t and

$$(g \circ f)'(t) = g'(f(t))f'(t).$$

*Critical Point Lemma. Let $f: (a, b) \to \mathbb{R}$ and $t \in (a, b)$. If f has a max or a min at t, then $f'(t)$ is either 0 or does not exist.

*Mean Value Theorem. If $f: [a, b] \to \mathbb{R}$ is continuous, and differentiable on (a, b), then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

Date: August 21, 2005.
Cauchy’s Mean Value Theorem. If \(f, g : [a, b] \to \mathbb{R} \) are continuous, and differentiable on \((a, b)\), then there exists \(c \in (a, b) \) such that
\[
f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).
\]

Rolle’s Theorem. If \(f : [a, b] \to \mathbb{R} \) is continuous, and differentiable on \((a, b)\), and if \(f(a) = f(b) \), then there exists \(c \in (a, b) \) such that \(f'(c) = 0 \).

Taylor’s Theorem. Let \(I \) be a closed bounded interval with endpoints \(a \) and \(b \), let \(J \) be the open interval with the same endpoints, let \(f : I \to \mathbb{R} \), and let \(n \in \mathbb{N} \). If \(f^{(n-1)} \) is continuous on \(I \) and differentiable on \(J \), then there exists \(c \in J \) such that
\[
f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)(b-a)^k}{k!} + \frac{f^{(n)}(c)(b-a)^n}{n!}.
\]

Inverse Function Theorem. Let \(I \) be an interval, \(f : I \to \mathbb{R} \), and \(t \in I \). Suppose \(f \) is 1-1 and continuous on \(I \), and differentiable at \(t \). If \(f'(t) \neq 0 \), then \(f^{-1} \) is differentiable at \(f(t) \) and
\[
(f^{-1})'(f(t)) = \frac{1}{f'(t)}.
\]

L’Hôpital’s Rule. Let \(f \) and \(g \) be differentiable real-valued functions on an interval. If either
\[
\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \text{or} \quad \lim_{x \to a} g(x) = \pm \infty,
\]
then
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},
\]
if the second limit exists.

Integrals

Darboux’s Theorem. Let \(f : [a, b] \to \mathbb{R} \) be integrable, and let \((u_n)\) be a sequence of Riemann sums for \(f \) associated to partitions \(P_n \) of \([a, b] \). If \(\|P_n\| \to 0 \), then \(u_n \to \int_a^b f \).

Theorem. Every continuous real-valued function on a closed bounded interval is integrable.

Theorem. If a bounded real-valued function on a closed bounded interval has only finitely many discontinuities, then it is integrable.

Theorem. Every monotone real-valued function on a closed bounded interval is integrable.

Interval Additivity Theorem. Let \(f : [a, c] \to \mathbb{R} \) and \(b \in (a, c) \). Then \(f \) is integrable on \([a, c]\) if and only if it is integrable on both \([a, b]\) and \([b, c]\), in which case
\[
\int_a^c f = \int_a^b f + \int_b^c f.
\]
Theorem. Let I be an interval, $f: I \to \mathbb{R}$, and $a \in I$. Define $F: I \to \mathbb{R}$ by $F(x) = \int_a^x f$. Then F is continuous.

*Mean Value Theorem for Integrals. If $f: [a, b] \to \mathbb{R}$ is continuous, then there exists $c \in [a, b]$ such that

$$\int_a^b f = f(c)(b - a).$$

Mean Value Theorem for Integrals, General Form. Let $f, g: [a, b] \to \mathbb{R}$. If f is continuous and g is integrable and nonnegative, then there exists $c \in [a, b]$ such that

$$\int_a^b fg = f(c) \int_a^b g.$$

*Fundamental Theorem of Calculus, Differentiating an Integral. Let I be an interval, let $f: I \to \mathbb{R}$ be integrable, and let $a \in I$. Define $F: I \to \mathbb{R}$ by $F(x) = \int_a^x f$. For all $t \in I$, if f is continuous at t, then F is differentiable at t and $F'(t) = f(t)$.

*Fundamental Theorem of Calculus, Integrating a Derivative. If $F: [a, b] \to \mathbb{R}$ is differentiable and F' is integrable, then $\int_a^b F' = F(b) - F(a)$.

*Change of Variables Theorem. If $\phi: [a, b] \to \mathbb{R}$ is differentiable, ϕ' is integrable, and $f: \phi([a, b]) \to \mathbb{R}$ is continuous, then

$$\int_a^b f(\phi(x))\phi'(x) \, dx = \int_{\phi(a)}^{\phi(b)} f(u) \, du.$$

*Integration by Parts. Let $f, g: [a, b] \to \mathbb{R}$ be differentiable, and assume that f' and g' are integrable. Then

$$\int_a^b f'g = f(b)g(b) - f(a)g(a) - \int_a^b fg'.$$

Uniform Convergence

Theorem. Let $A \subset \mathbb{R}$, let (f_n) be a uniformly convergent sequence of functions from A to \mathbb{R}, and let $t \in A$. If each f_n is continuous at t, then so is $\lim f_n$.

Theorem. Let (f_n) be a uniformly convergent sequence of functions from $[a, b]$ to \mathbb{R}. If each f_n is integrable, then so is $\lim f_n$, and

$$\int_a^b \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_a^b f_n.$$
Theorem. Let \(I \) be an interval, and let \((f_n)\) be a sequence of differentiable functions from \(I \) to \(\mathbb{R} \). Suppose that the sequence \((f'_n)\) of derivatives converges uniformly, and that there exists \(c \in I \) such that the sequence \((f_n(c))\) of values converges. Then \((f_n)\) converges pointwise, \(\lim_{n \to \infty} f_n\) is differentiable, and
\[
\left(\lim_{n \to \infty} f_n \right)' = \lim_{n \to \infty} f'_n.
\]

Theorem. Let \(A \subset \mathbb{R} \), let \(\sum_{n=1}^{\infty} f_n \) be a uniformly convergent series of functions from \(A \) to \(\mathbb{R} \), and let \(t \in A \). If each \(f_n \) is continuous at \(t \), then so is \(\sum_{n=1}^{\infty} f_n \).

Theorem. Let \(\sum_{n=1}^{\infty} f_n \) be a uniformly convergent series of functions from \([a, b]\) to \(\mathbb{R} \). If each \(f_n \) is integrable, then so is \(\sum_{n=1}^{\infty} f_n \), and
\[
\int_a^b \sum_{n=1}^{\infty} f_n(x)\, dx = \sum_{n=1}^{\infty} \int_a^b f_n(x)\, dx.
\]

Theorem. Let \(I \) be an interval, and let \(\sum_{n=1}^{\infty} f_n \) be a series of differentiable functions from \(I \) to \(\mathbb{R} \). Suppose that the series \(\sum_{n=1}^{\infty} f'_n \) of derivatives converges uniformly, and that there exists \(c \in I \) such that the series \(\sum_{n=1}^{\infty} f_n(c) \) of values converges. Then \(\sum_{n=1}^{\infty} f_n \) converges pointwise, \(\sum_{n=1}^{\infty} f_n \) is differentiable, and
\[
\left(\sum_{n=1}^{\infty} f_n \right)' = \sum_{n=1}^{\infty} f'_n.
\]

Weierstrass M-Test. Let \(A \subset \mathbb{R} \), and let \(\sum_{n=1}^{\infty} f_n \) be a series of functions from \(A \) to \(\mathbb{R} \). Suppose that there exists a convergent series \(\sum_{n=1}^{\infty} M_n \) of nonnegative real numbers such that for all \(n \in \mathbb{N} \) and \(x \in A \) we have \(|f_n(x)| \leq M_n \). Then \(\sum_{n=1}^{\infty} f_n \) converges uniformly.

Power Series

Cauchy-Hadamard Theorem. For every power series \(\sum_{n=0}^{\infty} c_n(x - a)^n \), the radius of convergence exists and equals
\[
r := \frac{1}{\limsup |c_n|^{1/n}},
\]
interpreted as 0 if the lim sup is \(\infty \), and \(\infty \) if the lim sup is 0.

Theorem. If the power series \(\sum_{n=0}^{\infty} c_n(x - a)^n \) has radius of convergence \(r \), then it converges absolutely on \((a - r, a + r)\).
Theorem. If the power series \(\sum_{n=0}^{\infty} c_n(x - a)^n \) has radius of convergence \(r \), then both power series
\[
\sum_{n=1}^{\infty} nc_n(x - a)^{n-1} \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{c_n}{n+1}(x - a)^{n+1}
\]
also have radius of convergence \(r \).

Moreover, if \(r > 0 \) and \(f: (a - r, a + r) \to \mathbb{R} \) is defined by \(f(x) = \sum_{n=0}^{\infty} c_n(x - a)^n \), then for all \(x \in (a - r, a + r) \) we have
\[
f'(x) = \sum_{n=1}^{\infty} nc_n(x - a)^{n-1} \quad \text{and} \quad \int_a^x f = \sum_{n=0}^{\infty} \frac{c_n}{n+1}(x - a)^{n+1}.
\]

Theorem. If \(f(x) = \sum_{n=0}^{\infty} c_n(x - a)^n \) for all \(x \) in a nonempty open interval containing \(a \), then for all \(n = 0, 1, \ldots \) we have
\[
c_n = \frac{f^{(n)}(a)}{n!}.
\]

Abel’s Theorem. If the power series \(\sum_{n=0}^{\infty} c_n(x - a)^n \) converges at \(b \), then it converges uniformly on the closed interval with endpoints \(a \) and \(b \).