Our goal is to prove the following results:

Critical Point Lemma. Let \(f : (a, b) \to \mathbb{R} \) and \(t \in (a, b) \). If \(f \) has a max or a min at \(t \), then \(f'(t) \) is either 0 or does not exist.

Mean Value Theorem. If \(f : [a, b] \to \mathbb{R} \) is continuous, and differentiable on \((a, b)\), then there exists \(c \in (a, b) \) such that
\[
 f(b) - f(a) = f'(c)(b - a).
\]

Cauchy’s Mean Value Theorem. If \(f, g : [a, b] \to \mathbb{R} \) are continuous, and differentiable on \((a, b)\), then there exists \(c \in (a, b) \) such that
\[
 f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).
\]

Rolle’s Theorem. If \(f : [a, b] \to \mathbb{R} \) is continuous, and differentiable on \((a, b)\), and if \(f(a) = f(b) \), then there exists \(c \in (a, b) \) such that \(f'(c) = 0 \).

Taylor’s Theorem. Let \(I \) be a closed bounded interval with endpoints \(a \) and \(b \), let \(J \) be the open interval with the same endpoints, let \(f : I \to \mathbb{R} \), and let \(n \in \mathbb{N} \). If \(f^{(n-1)} \) is continuous on \(I \) and differentiable on \(J \), then there exists \(c \in J \) such that
\[
 f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)(b-a)^k}{k!} + \frac{f^{(n)}(c)(b-a)^n}{n!}.
\]

Proof of Critical Point Lemma. Without loss of generality assume \(f \) has a maximum at \(t \); to handle the other case take negatives. For all \(x \in (a, t) \) we have
\[
 \frac{f(x) - f(t)}{x - t} \geq 0,
\]
and letting \(x \uparrow t \) we get \(f'(t) \geq 0 \). On the other hand, for all \(x \in (t, b) \) we have
\[
 \frac{f(x) - f(t)}{x - t} \leq 0,
\]
and letting \(x \downarrow t \) we get \(f'(t) \leq 0 \). Therefore, we must have \(f'(t) = 0 \). \(\text{QED}\)

Date: September 23, 2005.
Proof of Rolle’s Theorem. By the Extreme Value Theorem, \(f \) has a maximum and a minimum on \([a, b]\). Since \(f(a) = f(b) \), at least one of the maximum or minimum must occur at some \(c \in (a, b) \) (even if \(f \) is constant). By the Critical Point Lemma, \(f'(c) = 0 \). \(\text{QED} \)

Proof of Cauchy’s Mean Value Theorem. Define \(h : [a, b] \to \mathbb{R} \) by
\[
h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)).
\] Then \(h \) satisfies the hypotheses of Rolle’s Theorem, so there exists \(c \in (a, b) \) such that
\[
0 = h'(c) = f'(c)(g(b) - g(a)) - g'(c)(f(b) - f(a)),
\] and this implies the desired equation. \(\text{QED} \)

Proof of Mean Value Theorem. Just apply Cauchy’s Mean Value Theorem with \(g(x) = x \). \(\text{QED} \)

Proof of Taylor’s Theorem. Define \(g : I \to \mathbb{R} \) by
\[
g(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)(x-a)^k}{k!} + M(x-a)^n - f(x),
\] where \(M \in \mathbb{R} \) is chosen such that \(g(b) = 0 \). Note that \(g^{(k)}(a) = 0 \) for \(k = 0, \ldots, n-1 \). Since \(g(b) = 0 \), by Rolle’s Theorem there exists \(c_1 \) strictly between \(a \) and \(b \) such that \(g'(c_1) = 0 \). Then since \(g'(a) = 0 \), again by Rolle’s Theorem there exists \(c_2 \) strictly between \(a \) and \(c_1 \) such that \(g''(c_2) = 0 \). Continuing inductively, after \(n \) steps we get \(c := c_n \) strictly between \(a \) and \(c_{n-1} \) such that \(g^{(n)}(c) = 0 \). Since \(g^{(n)}(x) = Mn! - f^{(n)}(x) \), we get
\[
M = \frac{f^{(n)}(c)}{n!}.
\] Coupled with \(g(b) = 0 \), this gives the desired result. \(\text{QED} \)