Definition. Let \(A \subset \mathbb{R}, \) let \(f: A \to \mathbb{R}, \) let \(u \in \mathbb{R}, \) and suppose \(A \) is unbounded above. Then \(u \) is the limit of \(f \) at \(\infty, \) written \(u = \lim_{x \to \infty} f(x), \) if for all \(\epsilon > 0 \) there exists \(a \in \mathbb{R} \) such that for all \(x \in A, \)
\[
 \text{if } x > a \text{ then } |f(x) - u| < \epsilon.
\]
Similarly for limit at \(-\infty\).

All properties of limits continue to hold for limits at \(\pm \infty. \)

Definition. Let \(A \subset \mathbb{R}, \) let \(f: A \to \mathbb{R}, \) and let \(t \) be a cluster point of \(A. \) Then \(f \) goes to \(\infty \) at \(t, \) written \(\lim_{x \to t} f(x) = \infty, \) if for all \(a \in \mathbb{R} \) there exists \(\delta > 0 \) such that for all \(x \in A \setminus \{t\}, \)
\[
 \text{if } |x - t| < \delta \text{ then } f(x) > a.
\]
Similarly for goes to \(-\infty. \) Also similarly for one-sided infinite limits.

Definition. Let \(A \subset \mathbb{R}, \) let \(f: A \to \mathbb{R}, \) and suppose \(A \) is unbounded above. Then \(f \) goes to \(\infty \) at \(\infty, \) written \(\lim_{x \to \infty} f(x) = \infty, \) if for all \(a \in \mathbb{R} \) there exists \(b \in \mathbb{R} \) such that for all \(x \in A, \)
\[
 \text{if } x > b \text{ then } f(x) > a.
\]
Similarly for goes to \(-\infty, \) at either \(\infty \) or \(-\infty. \)

Most of the properties of limits continue to hold, with appropriate modifications, for infinite limits.