Our goal is to prove the following results:

Theorem 1. Every continuous real-valued function on a closed bounded interval is integrable.

Theorem 2. If a bounded real-valued function on a closed bounded interval has only finitely many discontinuities, then it is integrable.

Theorem 3. Every monotone real-valued function on a closed bounded interval is integrable.

We will need the following auxiliary result:

Lemma. Let \(f : [a,b] \to \mathbb{R} \) be bounded, and assume that for every \(t \in (a,b) \) the function \(f \) is integrable on \([a,t]\). Then \(f \) is integrable on \([a,b]\). Similarly if \(f \) is integrable on \([t,b]\) for every \(t \in (a,b)\).

We give the proofs of the theorems, after which we prove the lemma:

Proof of Theorem 1. Let \(f : [a,b] \to \mathbb{R} \) be continuous. Since the interval \([a,b]\) is closed and bounded, \(f \) is uniformly continuous. Let \(\epsilon > 0 \). Choose \(\delta > 0 \) such that for all \(x, y \in [a,b] \), if \(|x - y| < \delta \) then

\[
|f(x) - f(y)| < \frac{\epsilon}{2(b - a)}.
\]

Now choose a partition \(P = \{x_1, \ldots, x_n\} \) of \([a,b]\) such that \(\|P\| < \delta \). Then for all \(i = 1, \ldots, n \) and all \(x, y \in [x_{i-1}, x_i] \) we have \(|f(x) - f(y)| < \epsilon/(2(b - a)) \). Thus for all \(i = 1, \ldots, n \) we have

\[
M_i - m_i \leq \frac{\epsilon}{2(b - a)}.
\]
Hence

\[U(P) - L(P) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i \leq \frac{\epsilon}{2(b - a)} \sum_{i=1}^{n} \Delta x_i \]

\[= \frac{\epsilon(b - a)}{2(b - a)} = \frac{\epsilon}{2} < \epsilon. \]

Therefore \(f \) is integrable. \(\text{QED} \)

Proof of Theorem 2. There is a partition of the interval so that on each subinterval \(f \) is continuous except possibly at one endpoint. By the Interval Additivity Theorem, it suffices to show that \(f \) is integrable on each of these subintervals. By symmetry, it suffices to assume that \(f : [a, b] \to \mathbb{R} \) is bounded, and continuous except at \(b \). Then by Theorem 1, for every \(t \in (a, b) \) the function \(f \) is integrable on \([a, t] \), hence is integrable on \([a, b]\) by the lemma. \(\text{QED} \)

Proof of Theorem 3. Let \(f : [a, b] \to \mathbb{R} \) be monotone. Without loss of generality \(f \) is increasing; obvious changes handle the case where \(f \) is decreasing. Then for any partition \(P = \{x_1, \ldots, x_n\} \) of \([a, b]\),

\[M_i = \max\{f(x) : x_{i-1} \leq x \leq x_i\} = f(x_i) \]
\[m_i = \min\{f(x) : x_{i-1} \leq x \leq x_i\} = f(x_{i-1}). \]

Given \(\epsilon > 0 \), choose \(n \in \mathbb{N} \) such that

\[\frac{(b - a)(f(b) - f(a))}{n} < \epsilon. \]

Define a partition \(P \) of \([a, b]\) by

\[x_i = a + i\left(\frac{b - a}{n}\right) \quad \text{for } i = 0, 1, \ldots, n. \]
INTEGRABILITY

Then

\[U(P) - L(P) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i \]

\[= \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \frac{b-a}{n} \]

\[= \frac{b-a}{n} (f(x_n) - f(x_0)) \quad \text{(telescoping sum)} \]

\[= \frac{b-a}{n} (f(b) - f(a)) \]

\[< \epsilon. \]

Thus \(f \) is integrable. \quad \text{QED}

Proof of Lemma. We prove the first statement; the second statement then follows by symmetry. So, assume that for every \(t \in (a, b) \) the function \(f \) is integrable on \([a, t]\). Let \(M = \sup \{|f(x)| : x \in [a, b]\} \). Given \(\epsilon > 0 \), choose \(t \in (a, b) \) such that \(2M(b - t) < \epsilon/2 \). Since \(f \) is integrable on \([a, t]\) by hypothesis, there exists a partition \(P \) of \([a, t]\) such that \(U(P) - L(P) < \epsilon/2 \). Put \(R = \{t, b\} \) and \(Q = P \cup R \). Then \(R \) is a partition of \([t, b]\) and \(Q \) is a partition of \([a, b]\). For all \(x, y \in [t, b] \) we have \(|f(x) - f(y)| \leq 2M \). Thus

\[U(Q) - L(Q) = U(P) - L(P) + U(R) - L(R) \]

\[\leq \frac{\epsilon}{2} + 2M(b - t) \]

\[< \epsilon. \]

Thus \(f \) is integrable on \([a, b]\). \quad \text{QED}