Our goal is to prove the following:

Bolzano-Weierstrass Theorem. Every bounded sequence of real numbers has a convergent subsequence.

We will need the following two auxiliary results:

Proposition 1. Every sequence in \mathbb{R} has a monotone subsequence.

Proposition 2. Every bounded monotone sequence in \mathbb{R} converges.

Let's see how these propositions are used, after which we’ll prove the propositions:

Proof of Bolzano-Weierstrass Theorem. Let (x_n) be a bounded sequence in \mathbb{R}. Use Proposition 1 to find a monotone subsequence (y_k). Since the original sequence (x_n) is bounded, so is the subsequence (y_k). Then by Proposition 2 the subsequence (y_k) converges, concluding the proof. QED

Proof of Proposition 1. Let (x_n) be a sequence in \mathbb{R}. We use a trick: define

$$A = \{ n \in \mathbb{N} : \text{for all } k > n \text{ we have } x_k \leq x_n \}. $$

Case 1. A is finite. Choose $n_1 \in \mathbb{N}$ such that for all $n \in A$ we have $n < n_1$. For each $k = 1, 2, \ldots$ inductively choose $n_{k+1} > n_k$ such that $x_{n_{k+1}} > x_{n_k}$. Then the subsequence (x_{n_k}) is increasing.

Case 2. A is infinite. Restrict the sequence (x_n) to the infinite subset A of \mathbb{N} to get a subsequence (x_{n_k}). By construction of A, this subsequence is decreasing, because for all $k \in \mathbb{N}$ we have $x_{n_k} \geq x_{n_{k+1}}$. QED

Proof of Proposition 2. Let (x_n) be a bounded monotone sequence in \mathbb{R}.

Case 1. (x_n) is increasing. Since (x_n) is bounded, we can let $x = \sup x_n$. We will show that $x_n \to x$. Let $\epsilon > 0$. Then $x - \epsilon$ is not an upper bound for (x_n), so there exists $k \in \mathbb{N}$ such that
that \(x - \epsilon < x_k \). Then for all \(n \geq k \) we have:

\[
\begin{align*}
& x - \epsilon < x_k \\
& \leq x_n \quad \text{since } (x_n) \text{ is increasing} \\
& \leq x \quad \text{since } x \text{ is an upper bound for } (x_n),
\end{align*}
\]

hence \(|x_n - x| < \epsilon\).

Case 2. \((x_n)\) is decreasing. Define a sequence \((y_n)\) by \(y_n = -x_n\). Then \((y_n)\) is increasing, and is bounded since \((x_n)\) is, so from Case 1 we know that \((y_n)\) converges. Since \(x_n = -y_n\), the sequence \((x_n)\) also converges. \(\textbf{QED}\)