UNIFORM CONVERGENCE

JOHN QUIGG

Exercise 1. Prove that the continuous functions \(x^n \) converge pointwise on \([0, 1]\) (as \(n \to \infty \)) to a discontinuous limit.

Exercise 2. Find an example of a subset \(A \subset \mathbb{R} \) and a sequence \((f_n)\) of functions from \(A \) to \(\mathbb{R} \) such that:

- every \(f_n \) is continuous,
- \((f_n)\) converges pointwise but not uniformly, and
- \(\lim f_n \) is continuous.

Exercise 3. For each \(n \in \mathbb{N} \) define \(f_n : [0, 1] \to \mathbb{R} \) by

\[
f_n(x) = \begin{cases}
 n & \text{if } 0 < x < \frac{1}{n} \\
 0 & \text{if } x = 0 \text{ or } \frac{1}{n} \leq x \leq 1
\end{cases}
\]

Show that \((f_n)\) converges pointwise to an integrable function, but

\[
\int_0^1 \lim f_n \neq \lim \int_0^1 f_n.
\]

Exercise 4. Find an example of a sequence \((f_n)\) of continuous functions from \([0, 1]\) to \(\mathbb{R} \) which converges pointwise to 0 but for which \(\int_0^1 f_n \neq 0 \).

Exercise 5. Let \(g : \mathbb{R} \to \mathbb{R} \). Suppose:

- \(g \) is differentiable,
- \(g(0) = 0 \),
- \(\lim_{x \to \pm \infty} g(x) = 0 \), and
- \(g'(0) \neq 0 \).

For each \(n \in \mathbb{N} \) define \(f_n : \mathbb{R} \to \mathbb{R} \) by

\[
f_n(x) = \frac{g(nx)}{n}.
\]

Prove that \(f_n \to 0 \) uniformly, but \(f'_n(0) \neq 0 \).

Date: August 20, 2005.
Exercise 6. Let $A \subset \mathbb{R}$, let (f_n) be a uniformly convergent sequence of functions from $A \to \mathbb{R}$, let (x_n) be a sequence in A, and let $u \in \mathbb{R}$. Put $f = \lim f_n$. Prove that if $f(x_n) \to u$, then we also have $f_n(x_n) \to u$.

Exercise 7. Let $A \subset \mathbb{R}$, and let (f_n) and (g_n) be uniformly convergent sequences of functions from A to \mathbb{R}. Prove that $(f_n + g_n)$ converges uniformly.

Exercise 8. Let $A \subset \mathbb{R}$, and let (f_n) and (g_n) be uniformly convergent sequences of functions from A to \mathbb{R}. Suppose that there exists $M > 0$ such that for all $n \in \mathbb{N}$ and $x \in A$ we have $|f_n(x)| \leq M$ and $|g_n(x)| \leq M$.

Prove that (f_ng_n) converges uniformly.

Exercise 9. Show that the functions $x + 1/n$ converge uniformly on \mathbb{R} (as $n \to \infty$), but $(x + 1/n)^2$ does not converge uniformly.

Exercise 10. Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{x + n^2}$$

is differentiable on $[0, \infty)$, and find a formula for the derivative.