MAT 371 Homework 8
Instructor: John Quigg

Due: Friday, March 22

1. Define $f : [0,1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases}
1 & \text{if } x = 0 \\
0 & \text{if } 0 < x \leq 1.
\end{cases}$$

(a) Find the set of all upper sums of f (i.e., the set of numbers of the form $U(P)$ for P a partition of $[0,1]$).

(b) Find the set of all lower sums of f.

2. Let $f : [0,1] \rightarrow \mathbb{R}$ be bounded, and suppose f is continuous except at 0. Prove that f is integrable.

3. Let f be integrable on $[a,b]$. Let (P_n) be a sequence of partitions of $[a,b]$ such that $\|P_n\| \rightarrow 0$, and for each $n \in \mathbb{N}$ let S_n be a Riemann sum for f associated to the partition P_n. Prove that $S_n \rightarrow \int_a^b f$.